Skip to main content

Data Assimilation for Resource Model Updating

  • Chapter
  • First Online:
Book cover Closed Loop Management in Mineral Resource Extraction

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

One of the two core constituents of Closed-Loop Management for Mineral Resources is data assimilation for resource and grade control model updating. Similar to weather forecast models, the aim is to update the knowledge and forecast ability of the ROM ore as soon as new data from production monitoring become available. This chapter provides a formal description of the geostatistical foundations, a practical workflow and outlines one particular solution for updating. The theory is underpinned by three industrial-scale case studies and a discussion about practical aspects for operational implementation in Chap. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Abzalov, Applied Mining Geology. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-39264-6

    Book  Google Scholar 

  • T.W. Anderson, An Introduction to Multivariate Statistical Analysis. (John Wiley & Sons, Inc., New York, 1984), 675 p

    Google Scholar 

  • D. Beal, P. Brasseur, J.M. Brankart, Y. Ourmieres, J. Verron, Characterization of mixing errors in a coupled physical biogeochemical model of the north Atlantic: implications for nonlinear estimation using gaussian anamorphosis. Ocean Sci. 6, 247–262 (2010)

    Article  Google Scholar 

  • J. Benndorf, Making use of online production data: sequential updating of mineral resource models. Math. Geosci. 47(5), 547–563 (2015)

    Article  MATH  Google Scholar 

  • J. Benndorf, R. Dimitrakopoulos, New efficient methods for conditional simulations of large Orebodies. In: Advances in Applied Strategic Mine Planning (pp. 353–369). Springer, Cham (2018)

    Chapter  Google Scholar 

  • L. Bertino, G. Evensen, H. Wackernagel, Combining geostatistics and Kalman filtering for data assimilation in an estuarine system. Inverse Prob. 18, 1–23 (2002)

    Article  MATH  Google Scholar 

  • A. Boucher, R. Dimitrakopoulos, Multivariate block-support simulation of the Yandi iron ore deposit Western Australia. Math. Geosci. 44(4), 449–468 (2012)

    Article  Google Scholar 

  • G. Burgers, P. Jan van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126, 1719–1724 (1998)

    Article  Google Scholar 

  • J.P. Chiles, P. Delfiner, Geostatistics, Modelling Spatial Uncertainty, 2nd edn. (Wiley, New York, 2012)

    Book  MATH  Google Scholar 

  • M.D. Davis, Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math. Geol. 19(2), 91–98 (1987)

    Google Scholar 

  • R. Tolosana-Delgado, U. Mueller, K.G. van den Boogaart, Geostatistics for compositional data: an overview. Math. Geosci. 51(4), 485–526 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Desbarats, R. Dimitrakopoulos, Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Math. Geol. 32(8), 919–942 (2000)

    Article  Google Scholar 

  • C. Deutsch, A. Journel, GSLIB Geostatistical Software Library and User’s Guide (Oxford University Press, Oxford, 1992)

    Google Scholar 

  • C.R. Dietrich, Computationally efficient generation of Gaussian conditional simulation over regular sample grids. Math. Geol. 25(1), 439–452 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Dimitrakopoulos, X. Luo, Generalised sequential Gaussian simulation on group size ν and screen—effect approximations for large field simulations. Math. Geol. 36(5), 567–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Evensen, Advanced data assimilation for strongly nonlinear dynamics. Mon. Weather Rev. 125, 1342–1354 (1997)

    Article  Google Scholar 

  • G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  • M. Godoy, A risk analysis based framework for strategic mine planning and design—method and application. In: Advances in Applied Strategic Mine Planning (pp. 75–90). Springer, Cham (2018)

    Chapter  Google Scholar 

  • J.J. Gómez-Hernández, A.G. Journel, Joint Sequential Simulation of Multigaussian Fields. In: Geostatistics Troia’92. (Springer, Dordrecht 1993), pp. 85–94

    Google Scholar 

  • P. Goovaerts, Geostatistics for Natural Resources Evaluation. Applied Geostatistics Series. (Oxford University Press, New York 1997)

    Google Scholar 

  • L. Heidari, V. Gervais, M. Le Ravalec, H. Wackernagel, History matching of reservoir models by ensemble Kalman filtering: The state of the art and a sensitivity study. Uncertainty Analysis and Reservoir Modeling: AAPG Memoir 96, 249–264 (2011)

    Google Scholar 

  • H.J. Hendricks Franssen, H.P. Kaiser, U. Kuhlmann, G. Bauser, F. Stauffer, R. Müller, W. Kinzelbach, Operational real‐time modeling with ensemble Kalman filter of variably saturated subsurface flow including stream‐aquifer interaction and parameter updating. Water Resour. Res. 47(2) (2011)

    Google Scholar 

  • A. Horta, A. Soares, Direct sequential co-simulation with joint probability distributions. Math. Geosci. 42(3), 269–292 (2010)

    Article  MATH  Google Scholar 

  • P. Houtekamer, H. Mitchell, Data assimilation using an ensemble kalman filter technique. Mon. Weather Rev. 126, 796–811 (1998)

    Article  Google Scholar 

  • L.Y. Hu, Y. Zhao, Y. Liu, C. Scheepens, A. Bouchard, Updating multipoint simulations using the ensemble Kalman filter. Comput. Geosci. 51, 7–15 (2012)

    Article  Google Scholar 

  • E.H. Isaaks, The application of Monte Carlo methods to the analysis of spatially correlated data. Unpubl. PhD dissertation, Department of Applied Earth Sciences, Stanford University, Stanford, California, 213 p (1990)

    Google Scholar 

  • E. Isaaks, R.M. Srivastava, An Introduction to Applied Geostatistics. (Oxford University Press 1989)

    Google Scholar 

  • J.D. Jansen, S.D. Douma, D.R. Brouwer, van den P.M.J. Hof, O.H. Bosgra, A.W. Hemink, Closed-Loop Reservoir management. Paper 119098 presented at the SPE Reservoir Simulation Symposium. Woodlands (2009)

    Google Scholar 

  • A. Jewbali, R. Dimitrakopoulos, Implementation of conditional simulation by successive residuals. Comput. Geosci. 37, 129–142 (2011)

    Article  Google Scholar 

  • Joint Ore Reserves Committee (JORC). Australasian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves (The JORC Code) (2012)

    Google Scholar 

  • A.G. Journel, C.J. Huijbregts, Mining Geostatistics (Academic Press, London, 1978), p. 600

    Google Scholar 

  • R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  • A.N. Kolmogorov, Foundations of the Theory of Probability: Chelsa. (New York, 1950), 71 p

    Google Scholar 

  • D. E. Myers, Vector conditional simulation. In: Geostatistics. (Springer, Dordrecht 1989), pp. 283–293

    Chapter  Google Scholar 

  • U. Mueller, van den K. G. Boogaart, R. Tolosana-Delgado, A truly multivariate normal score transform based on lagrangian flow. In: Geostatistics Valencia 2016. (Springer, Cham 2017), pp. 107–118

    Chapter  Google Scholar 

  • W. Naworyta, J. Benndorf, Accuracy assessment of geostatistical modelling methods of mineral deposits for the purpose of their future exploitation—based on one lignite deposit. Mineral Resour. Manag. 28(1), 77–101 (2012) (Polish)

    Google Scholar 

  • NI 43–101. National Instrument 43-101, standards of Disclosure for Mineral Projects (NI 43-101). CIM SV 56—2013, National Instrument 43-101 Standards of Disclosure for Mineral Projects (2011)

    Google Scholar 

  • V. Pawlowsky-Glahn, A. Buccianti, Compositional Data Analysis. (Wiley 2011)

    Google Scholar 

  • A. Prior, J. Benndorf, U. Müller, Resource and grade control model updating for underground mining production settings. Math. Geosci. (2020a) (in print)

    Google Scholar 

  • A. Prior, R. Tolosana-Delgado, van den K.G. Boogaart, J. Benndorf, Resource model updating for compositional geometallurgical variables. Math. Geosci. (2020b). (Accepted)

    Google Scholar 

  • M. Rosenblatt, Remarks on multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)

    Google Scholar 

  • M.E. Rossi, C.V. Deutsch, Mineral Resoure Estimation (DOI, Springer, Dordrecht, 2014). https://doi.org/10.1007/978-1-4020-5717-5

    Book  Google Scholar 

  • P. Switzer, A. Green, (1984). Min/max autocorrelation factors for multivariate spatial imagery. Dept. of Statistics, Stanford University, Tech. Rep. 6 (1984)

    Google Scholar 

  • K.G. van den Boogaart, U. Mueller, R. Tolosana-Delgado, An affine equivariant multivariate normal score transform for compositional data. Math. Geosci. 49(2), 231–251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • J.A. Vargas-Guzmán, T.C.J. Yeh, Sequential Kriging and co-kriging: two powerful geostatistical approaches. Stoch. Env. Res. Risk Assess. 13, 416–435 (1999)

    Article  MATH  Google Scholar 

  • J.A. Vargas-Guzmán, R. Dimitrakopoulos, Conditional simulation of random fields by successive residuals. Math. Geol. 34, 597–611 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Wackernagel, Multivariate geostatistics: an introduction with applications. (Springer Science & Business Media 2013)

    Google Scholar 

  • T. Wambeke, J. Benndorf, A simulation-based geostatistical approach to real-time reconciliation of the grade control model. Math. Geosci. 49(1), 1–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Wambeke, J. Benndorf, A study of the influence of measurement volume, blending ratios and sensor precision on real-time reconciliation of grade control models. Math. Geosci. 50(7), 801–826 (2018)

    Article  MATH  Google Scholar 

  • A.M. Yaglom, Correlation theory of stationary and related random functions. (Springer, New York, 1987), 235 p

    Google Scholar 

  • H. Zhou, J.J. Gomez-Hernandez, H.J. Hendricks Franssen, L. Li, An approach to handling Non-gaussianity of parameters and state variables in ensemble Kalman. Adv. Water Resour. 34, 844–864 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Benndorf .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benndorf, J. (2020). Data Assimilation for Resource Model Updating. In: Closed Loop Management in Mineral Resource Extraction. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-40900-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40900-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40899-2

  • Online ISBN: 978-3-030-40900-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics