A Closed-Loop Approach for Mineral Resource Extraction

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This Chapter introduces the closed-loop management concept of mineral resources focusing on grade control. This Chapter introduces first in the traditional mineral resource extraction chain and discusses some recent developments in production monitoring. Subsequently, it describes underlying models and optimization tasks in mining and introduces to the closed-loop mineral resource management (CLMRM).


  1. M.Z. Abzalov, Localized uniform conditioning (LUC): method and application case studies. J. South Afr. Inst. Min. Metall. 114(3), 205–205 (2014)Google Scholar
  2. J. Benndorf, R. Dimitrakopoulos, New efficient methods for conditional simulations of large orebodies. in Advances in Applied Strategic Mine Planning, (Springer, Cham, 2018), pp. 353–369CrossRefGoogle Scholar
  3. J. Benndorf, Investigating in situ variability and homogenisation of key quality parameters in continuous mining operations. Min. Technol. 122(2), 78–85 (2013)CrossRefGoogle Scholar
  4. J. Benndorf, R. Dimitrakopoulos, Stochastic long-term production scheduling of iron ore deposits: integrating joint multi-element geological uncertainty. J. Min. Sci. 49(1), 68–81 (2013)CrossRefGoogle Scholar
  5. J. Benndorf, M.W.N. Buxton, K. Nienhaus, L. Rattmann, A. Korre, A. Soares, A. deJong, N. Jeannee, P. Graham, D. Buttgereit, C. Gehlen, F. Eijkelkamp, H. Mischo, M. Sandtke, T Wilsnack, Real-time mining-Moving towards continuous process management in mineral resource extraction. in proceedings of the 3rd international future mining conference, (AUSIMM, Sydney, 2015b), pp. 37–46Google Scholar
  6. A. Boucher, R. Dimitrakopoulos, Block simulation of multiple correlated variables. Math. Geosci. 41(2), 215–237 (2009)zbMATHCrossRefGoogle Scholar
  7. M.W.N. Buxton, J. Benndorf, The use of sensor derived data in optimization along the mine-value-chain. in Proceedings of the 15th International ISM Congress, (Aachen, Germany, 2013), pp. 324–336Google Scholar
  8. J. Caers, Modeling uncertainty in the earth sciences, (Wiley, 2011)Google Scholar
  9. J.P. Chiles, P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, vol. 497, (Wiley, 2009)Google Scholar
  10. M. David, Geostatistical Ore Reserve Estimation, (Elsevier, Amsterdam, 1977), p. 364Google Scholar
  11. R. Tolosana-Delgado, U. Mueller, K.G. van den Boogaart, Geostatistics for compositional data: an overview. Math. Geosci. 51(4), 485–526 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  12. J Deraisme, J Rivoirard, P Carrasco Multivariate uniform conditioning and block simulations with discrete Gaussian model: application to Chuquicamata deposit. in Proceedings of the Eighth International Geostatistics Congress, eds. by J.M. Ortiz, X Emery (2008), pp. 69–78Google Scholar
  13. R. Dimitrakopoulos, C.T. Farrelly, M. Godoy, Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design. Min. Technol. 111(1), 82–88 (2002)CrossRefGoogle Scholar
  14. R. Dimitrakopoulos, Stochastic optimization for strategic mine planning: a decade of developments. J. Min. Sci. 47(2), 138–150 (2011)CrossRefGoogle Scholar
  15. S.C. Dominy, L. O’Connor, A. Parbhakar-Fox, H.J. Glass, S. Purevgerel, Geometallurgy—a route to more resilient mine operations. Minerals 8(12), 560 (2018)CrossRefGoogle Scholar
  16. S.O. Gilani, J. Sattarvand, Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization. Comput. Geosci. 87, 31–40 (2016)CrossRefGoogle Scholar
  17. M. Godoy, R. Dimitrakopoulos, Managing risk and waste mining in long-term production scheduling of open-pit mines. SME Trans 316(3) (2004)Google Scholar
  18. R. Goodfellow, R. Dimitrakopoulos, Algorithmic integration of geological uncertainty in pushback designs for complex multiprocess open pit mines. Min. Technol. 122(2), 67–77 (2013)CrossRefGoogle Scholar
  19. P. Goovaerts, Geostatistics for natural resources evaluation, (Oxford University Press on Demand, 1997)Google Scholar
  20. J.D. Jansen, O.H. Bosgra, P.M.J. Van den Hof, Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18, 846–855 (2008). Scholar
  21. J.D. Jansen, S.G. Douma, D.R. Brouwer, P.M.J. Van den Hof, O.H. Bosgra, A.W. Heemink, Closed-loop reservoir management. Paper SPE 119098 presented at the SPE Reservoir Simulation Symposium, (The Woodlands, USA, 2-4- February, 2009)Google Scholar
  22. A. John, R. Donner, Integriertes Lagerstättenmanagement unter Anwendung geostatistischer Simulationsverfahren zur Modellierung sedimentärer Lagerstätten. in Stoffliche Nutzung von Braunkohle, (Springer Vieweg, Berlin, Heidelberg, 2018), pp. 117–130CrossRefGoogle Scholar
  23. A.G. Journel, Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69(5), 673–687 (1974)CrossRefGoogle Scholar
  24. Jupp, K., Howard, T.J., Everett, J.E. (2013) The role of precrusher stockpiling for grade control in mining, in Proceedings Iron Ore 2013, pp 203-214, (The Australasian Institute of Mining and Metallurgy: Melbourne)Google Scholar
  25. M. Kumral, P.A. Dowd, A simulated annealing approach to mine production scheduling. J. Oper. Res. Soc. 56(8), 922–930 (2005)zbMATHCrossRefGoogle Scholar
  26. A. Lamghari, R. Dimitrakopoulos, A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. Eur. J. Oper. Res. 222(3), 642–652 (2012)zbMATHCrossRefGoogle Scholar
  27. A. Lynch, A. Mainza, S. Morell, Ore comminution measurement techniques, in Comminution handbook. Spectrum series, vol. 21, ed. by A. Lynch, (The Australian Institute of Mining and Metallurgy, Carlton Victoria, Australia, 2015), pp. 43–60Google Scholar
  28. D. Marcotte, Direct conditional simulation of block grades, in Geostatistics for the Next Century: Kluwer Academic Publishers, ed. by R. Dimitrakopoulos (Dordtrecht, The Netherlands, 1994), pp. 245–252CrossRefGoogle Scholar
  29. G. Mariethoz, J. Caers, Multiple-point geostatistics: stochastic modeling with training images (Wiley, 2014)Google Scholar
  30. C.R.O. Mariz, A. Prior, J. Benndorf, Recoverable resource estimation mixing different quality of data. in Mining goes Digital: Proceedings of the 39th International Symposium’Application of Computers and Operations Research in the Mineral Industry’(APCOM 2019), June 4-6, (CRC Press, Wroclaw, Poland, 2019), p. 235CrossRefGoogle Scholar
  31. M. Menabde, G. Froyland, P. Stone, G.A. Yeates, Mining schedule optimisation for conditionally simulated orebodies. in Advances in applied strategic mine planning, (Springer, Cham, 2018), pp. 91–100CrossRefGoogle Scholar
  32. H.M. Parker, Reconciliation principles for the mining industry. Min. Technol. 121(3), 160–176 (2012)CrossRefGoogle Scholar
  33. R. Peattie, R. Dimitrakopoulos, Forecasting recoverable ore reserves and their uncertainty at Morila Gold Deposit, Mali: an efficient simulation approach and future grade control drilling. Math. Geosci. 45(8), 1005–1020 (2013)zbMATHCrossRefGoogle Scholar
  34. M.J Pyrcz, C.V. Deutsch, Geostatistical reservoir modeling, (Oxford university press, 2014)Google Scholar
  35. N. Remy, A. Boucher, J. Wu, Applied geostatistics with SGeMS: a user’s guide, (Cambridge University Press, 2009)Google Scholar
  36. O. Rondon, Teaching aid: minimum/maximum autocorrelation factors for joint simulation of attributes. Math. Geosci. 44(4), 469–504 (2012)zbMATHCrossRefGoogle Scholar
  37. A. Soares, Direct sequential simulation and cosimulation. Math. Geol. 33(8), 911–926 (2001)zbMATHCrossRefGoogle Scholar
  38. S. Strebelle, Conditional simulation of complex geological structures using multi-point statistics. Math. Geol. 34(1), 1–21 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  39. J. Vann, S. Jackson, A. Bye, S. Coward, S. Moayer, G. Nicholas, R. Wolff, Scenario thinking: a powerful tool for strategic planning and evaluation of mining projects and operations. in Project Evaluation 2012: Proceedings. Project Evaluation Conference, May 2012, pp. 5–14Google Scholar
  40. G.W. Verly, Sequential Gaussian cosimulation: a simulation method integrating several types of information. in Geostatistics Troia’92, (Springer, Dordrecht, 1993), pp. 543–554Google Scholar
  41. J.P. Vielma, D. Espinoza, E. Moreno, Risk control in ultimate pits using conditional simulations. Proc. APCOM, 107–114 (2009)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mine Surveying and GeodesyUniversity of Technology Bergakademie FreibergFreibergGermany

Personalised recommendations