Skip to main content

Sex Differences in Sleep

  • Chapter
  • First Online:
Sleep Disorders in Women

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

There are sex differences in human sleep behavior, whether assessed by self-report or with polysomnographic (PSG) and electroencephalographic (EEG) measures. Women report more sleep problems and a poorer sleep quality, and are at greater risk for developing insomnia disorder, than men across a wide age range. Men and women also interpret sleep quality differently. In contrast, PSG studies show that women have better objective sleep (e.g., longer total sleep time, fewer awakenings, more slow wave activity) and that age has a smaller impact on PSG measures in women than men, suggesting that objective and subjective assessments are tapping into different constructs of sleep. Some of the sex differences in sleep may be due to the influences of the changing hormone milieu on sleep in women across the lifespan. There are also sex differences in the prevalence of insomnia, which is more common in women from adolescence throughout adulthood, and which can emerge in association with hormonal fluctuations such as during perimenopause. Sex is an important factor in determining sleep behavior, sleep architecture and sleep disorder prevalence and presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mong JA, Cusmano DM. Sex differences in sleep: impact of biological sex and sex steroids. Philos Trans R Soc Lond Ser B Biol Sci [Internet]. 2016;371:20150110. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26833831.

    Article  CAS  Google Scholar 

  2. Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, et al. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol [Internet]. 2017;47:66–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28757114.

    Article  Google Scholar 

  3. Ferrara M, De Gennaro L. How much sleep do we need? Sleep Med Rev [Internet]. 2001;5:155–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12531052.

    Article  Google Scholar 

  4. Lindberg E, Janson C, Gislason T, Björnsson E, Hetta J, Boman G. Sleep disturbances in a young adult population: can gender differences be explained by differences in psychological status? Sleep [Internet]. 1997;20:381–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9302720.

    Article  CAS  Google Scholar 

  5. Groeger JA, Zijlstra FRH, Dijk D-J. Sleep quantity, sleep difficulties and their perceived consequences in a representative sample of some 2000 British adults. J Sleep Res [Internet]. 2004;13:359–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15560771.

    Article  CAS  Google Scholar 

  6. Collop NA, Adkins D, Phillips BA. Gender differences in sleep and sleep-disordered breathing. Clin Chest Med [Internet]. 2004;25:257–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15099887.

    Article  Google Scholar 

  7. Zhang B, Wing Y-K. Sex differences in insomnia: a meta-analysis. Sleep [Internet]. 2006;29:85–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16453985.

    Article  Google Scholar 

  8. Voderholzer U, Al-Shajlawi A, Weske G, Feige B, Riemann D. Are there gender differences in objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress Anxiety [Internet]. 2003;17:162–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12768650.

    Article  Google Scholar 

  9. Redline S, Kirchner HL, Quan SF, Gottlieb DJ, Kapur V, Newman A. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med [Internet]. 2004;164:406–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14980992.

    Article  Google Scholar 

  10. Della Monica C, Johnsen S, Atzori G, Groeger JA, Dijk D-J. Rapid eye movement sleep, sleep continuity and slow wave sleep as predictors of cognition, mood, and subjective sleep quality in healthy men and women, aged 20-84 years. Front Psych [Internet]. 2018;9:255. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29988413.

    Article  Google Scholar 

  11. Purcell SM, Manoach DS, Demanuele C, Cade BE, Mariani S, Cox R, et al. Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource. Nat Commun [Internet]. 2017;8:15930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28649997.

    Article  CAS  PubMed Central  Google Scholar 

  12. Kaplan KA, Hardas PP, Redline S, Zeitzer JM, Sleep Heart Health Study Research Group. Correlates of sleep quality in midlife and beyond: a machine learning analysis. Sleep Med [Internet]. 2017;34:162–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28522086.

    Article  Google Scholar 

  13. Kaplan KA, Hirshman J, Hernandez B, Stefanick ML, Hoffman AR, Redline S, et al. When a gold standard isn’t so golden: lack of prediction of subjective sleep quality from sleep polysomnography. Biol Psychol [Internet]. 2017;123:37–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27889439.

    Article  Google Scholar 

  14. Krystal AD, Edinger JD. Measuring sleep quality. Sleep Med [Internet]. 2008;9(Suppl 1):S10–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18929313.

    Article  Google Scholar 

  15. Morris JL, Rohay J, Chasens ER. Sex differences in the psychometric properties of the Pittsburgh sleep quality index. J Womens Health (Larchmt) [Internet]. 2018;27:278–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29154713.

    Article  Google Scholar 

  16. Kervezee L, Shechter A, Boivin DB. Impact of shift work on the circadian timing system and health in women. Sleep Med Clin [Internet]. 2018;13:295–306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30098749.

    Article  Google Scholar 

  17. Fischer D, Lombardi DA, Marucci-Wellman H, Roenneberg T. Chronotypes in the US – influence of age and sex. PLoS One [Internet]. 2017;12:e0178782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28636610.

    Article  CAS  Google Scholar 

  18. Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SBS, Santhi N, et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythm [Internet]. 2010;25:288–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20679498.

    Article  CAS  Google Scholar 

  19. Duffy JF, Cain SW, Chang A-M, Phillips AJK, MĂŒnch MY, Gronfier C, et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A [Internet]. 2011;108(Suppl 3):15602–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21536890.

    Article  CAS  Google Scholar 

  20. Saksvik IB, Bjorvatn B, Hetland H, Sandal GM, Pallesen S. Individual differences in tolerance to shift work – a systematic review. Sleep Med Rev [Internet]. 2011;15:221–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20851006.

    Article  Google Scholar 

  21. Santhi N, Lazar AS, McCabe PJ, Lo JC, Groeger JA, Dijk D-J. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci U S A [Internet]. 2016;113:E2730–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27091961.

    Article  CAS  PubMed Central  Google Scholar 

  22. Galland BC, Taylor BJ, Elder DE, Herbison P. Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med Rev [Internet]. 2012;16:213–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21784676.

    Article  Google Scholar 

  23. Epstein R, Chillag N, Lavie P. Starting times of school: effects on daytime functioning of fifth-grade children in Israel. Sleep. 2017;21:250–7.

    Article  Google Scholar 

  24. Thorleifsdottir B, Björnsson JK, Benediktsdottir B, Gislason T, Kristbjarnarson H. Sleep and sleep habits from childhood to young adulthood over a 10-year period. J Psychosom Res. 2002;53:529–37.

    Article  CAS  PubMed  Google Scholar 

  25. Montgomery-Downs HE. Polysomnographic characteristics in normal preschool and early school-aged children. Pediatrics. 2006;117:741–53.

    Article  PubMed  Google Scholar 

  26. Sadeh A, Raviv A, Gruber R. Sleep patterns and sleep disruptions in school-age children. Dev Psychol. 2000;36:291–301. Available from: http://eds.a.ebscohost.com.proxy.library.lincoln.ac.uk/eds/detail/detail?vid=2&sid=92b1c2b8-1312-4ce1-8aad-b09f1411d0a1@sessionmgr4004&hid=4208&bdata=JnNpdGU9ZWRzLWxpdmUmc2NvcGU9c2l0ZQ==#db=pdh&AN=2000-03210-001.

    Article  CAS  PubMed  Google Scholar 

  27. Lemola S, RĂ€ikkönen K, Scheier MF, Matthews KA, Pesonen AK, Heinonen K, et al. Sleep quantity, quality and optimism in children. J Sleep Res. 2011;20:12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaina A, Sekine M, Hamanishi S, Chen X, Kagamimori S. Gender and temporal differences in sleep-wake patterns in Japanese schoolchildren. Sleep [Internet]. 2005;28:337–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16173655.

    Google Scholar 

  29. Werner H, Molinari L, Guyer C, Jenni OG. Agreement rates between actigraphy, diary, and questionnaire for children’s sleep patterns. Arch Pediatr Adolesc Med. 2008;162:350–8.

    Article  PubMed  Google Scholar 

  30. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, et al. A marker for the end of adolescence. Curr Biol [Internet]. 2004;14:R1038–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15620633.

    Article  CAS  Google Scholar 

  31. Olds T, Blunden S, Petkov J, Forchino F. The relationships between sex, age, geography and time in bed in adolescents: a meta-analysis of data from 23 countries. Sleep Med Rev [Internet]. 2010;14:371–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20207558.

    Article  Google Scholar 

  32. Short MA, Gradisar M, Lack LC, Wright H, Carskadon MA. The discrepancy between actigraphic and sleep diary measures of sleep in adolescents. Sleep Med [Internet]. 2012;13:378–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22437142.

    Article  Google Scholar 

  33. Campbell IG, Grimm KJ, de Bie E, Feinberg I. Sex, puberty, and the timing of sleep EEG measured adolescent brain maturation. Proc Natl Acad Sci U S A [Internet]. 2012;109:5740–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22451933.

    Article  CAS  Google Scholar 

  34. Goldstone A, Willoughby AR, de Zambotti M, Franzen PL, Kwon D, Pohl KM, et al. The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence. Brain Struct Funct [Internet]. 2018;223:669–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28913599.

    Article  Google Scholar 

  35. Baker FC, Willoughby AR, de Zambotti M, Franzen PL, Prouty D, Javitz H, et al. Age-related differences in sleep architecture and electroencephalogram in adolescents in the national consortium on alcohol and neurodevelopment in adolescence sample. Sleep [Internet]. 2016;39:1429–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27253763.

    Article  Google Scholar 

  36. de Zambotti M, Goldstone A, Colrain IM, Baker FC. Insomnia disorder in adolescence: diagnosis, impact, and treatment. Sleep Med Rev [Internet]. Elsevier Ltd. 2018;39:12–24. Available from: https://doi.org/10.1016/j.smrv.2017.06.009.

    Article  Google Scholar 

  37. Zhang J, Chan NY, Lam SP, Li SX, Liu Y, Chan JWY, et al. Emergence of sex differences in insomnia symptoms in adolescents: a large-scale school-based study. Sleep [Internet]. 2016;39:1563–70. Available from: https://academic.oup.com/sleep/article/39/8/1563/2706347.

    Article  Google Scholar 

  38. Armitage R, Smith C, Thompson S, Hoffmann R. Sex differences in slow-wave activity in response to sleep deprivation. Sleep Res Online. 2001;4:33–41.

    Google Scholar 

  39. Armitage R, Hoffmann R, Fitch T, Trivedi M, Rush AJ. Temporal characteristics of delta activity during NREM sleep in depressed outpatients and healthy adults: group and sex effects. Sleep [Internet]. 2000;23:607–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10947028.

    CAS  Google Scholar 

  40. Armitage R, Hoffmann R, Emslie G, Rintelmann J, Robert J. Sleep microarchitecture in childhood and adolescent depression: temporal coherence. Clin EEG Neurosci [Internet]. 2006;37:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16475478.

    Article  Google Scholar 

  41. Bixler EO, Papaliaga MN, Vgontzas AN, Lin H-M, Pejovic S, Karataraki M, et al. Women sleep objectively better than men and the sleep of young women is more resilient to external stressors: effects of age and menopause. J Sleep Res [Internet]. 2009;18:221–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19302341.

    Article  Google Scholar 

  42. Moe KE, Larsen LH, Vitiello MV, Prinz PN. Estrogen replacement therapy moderates the sleep disruption associated with nocturnal blood sampling. Sleep [Internet]. 2001;24:886–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11766158.

    Article  CAS  Google Scholar 

  43. Dijk DJ, James LM, Peters S, Walsh JK, Deacon S. Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol [Internet]. 2010;24:1613–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19487320.

    Article  CAS  Google Scholar 

  44. Baker FC, Lee KA. Menstrual cycle effects on sleep. Sleep Med Clin [Internet]. 2018;13:283–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30098748.

    Article  Google Scholar 

  45. Driver HS, Dijk DJ, Werth E, Biedermann K, BorbĂ©ly AA. Sleep and the sleep electroencephalogram across the menstrual cycle in young healthy women. J Clin Endocrinol Metab [Internet]. 1996;81:728–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8636295.

    CAS  Google Scholar 

  46. Bei B, Coo S, Trinder J. Sleep and mood during pregnancy and the postpartum period. Sleep Med Clin [Internet]. 2015;10:25–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26055670.

    Article  Google Scholar 

  47. Ohayon MM. Severe hot flashes are associated with chronic insomnia. Arch Intern Med [Internet]. 2006;166:1262–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16801508.

    Article  Google Scholar 

  48. Baker FC, de Zambotti M, Colrain IM, Bei B. Sleep problems during the menopausal transition: prevalence, impact, and management challenges. Nat Sci Sleep [Internet]. 2018;10:73–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29445307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona C. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baker, F.C., YƱksel, D., de Zambotti, M. (2020). Sex Differences in Sleep. In: Attarian, H., Viola-Saltzman, M. (eds) Sleep Disorders in Women. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-40842-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40842-8_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-40841-1

  • Online ISBN: 978-3-030-40842-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics