Skip to main content

Abstract

A neurological disorder is a chronic discomfort that affects many people throughout the world. The major form of treatment is long-term drug therapy, and surgery is an alternative for patients who do not respond to drug treatment when the cause is limited to a region. Continuous monitoring of neural activity is commonly used for the diagnosis of abnormal zones. Thanks to the advances in electronics, sensor systems, and fabrication methodologies, this book proposes an entirely implantable wireless neural monitoring system which eliminates the wires and possible complications due to them. This chapter presents the motivation of a wireless implantable neural recording system. It describes the challenges while removing the wires going from intracranial sensors to an external device outside of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capogrosso M, Milekovic T, Borton D et al (2016) A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539:284–288

    Article  Google Scholar 

  2. Epilepsy. In: World Health Organization. http://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed 22 Oct 2018

  3. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342: 314–319

    Article  Google Scholar 

  4. Berkovic SF, McIntosh AM, Kalnins RM et al (1995) Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 45:1358–1363

    Article  Google Scholar 

  5. Webster JG (2009) Medical instrumentation: application and design, 4th edn. Wiley, Hoboken

    Google Scholar 

  6. Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14:720–726

    Article  Google Scholar 

  7. Najafi K, Wise KD (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid State Circuits 21:1035–1044

    Article  Google Scholar 

  8. Spencer D, Nguyen DK, Sivaraju A (2015) Invasive EEG in presurgical evaluation of epilepsy. In: The treatment of epilepsy. Wiley-Blackwell, Hoboken, pp 733–755

    Chapter  Google Scholar 

  9. Nair DR, Burgess R, McIntyre CC, Lüders H (2008) Chronic subdural electrodes in the management of epilepsy. Clin Neurophysiol 119:11–28

    Article  Google Scholar 

  10. Thakor NV (2013) Translating the brain-machine interface. Sci Transl Med 5:210ps17

    Article  Google Scholar 

  11. Engel J, Pedley TA, Aicardi J (2008) Epilepsy: a comprehensive textbook. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  12. Bingaman WE, Bulacio J (2014) Placement of subdural grids in pediatric patients: technique and results. Childs Nerv Syst 30:1897–1904

    Article  Google Scholar 

  13. Stead M, Bower M, Brinkmann BH et al (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133:2789–2797

    Article  Google Scholar 

  14. Van Gompel JJ, Worrell GA, Bell ML et al (2008) Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery 63:498–505; discussion 505–506

    Article  Google Scholar 

  15. Fountas KN (2011) Implanted subdural electrodes: safety issues and complication avoidance. Neurosurg Clin N Am 22:519–531, vii

    Google Scholar 

  16. Akin T, Najafi K, Bradley RM (1998) A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J Solid State Circuits 33:109–118

    Article  Google Scholar 

  17. Bonfanti A, Ceravolo M, Zambra G et al (2010) A multi-channel low-power IC for neural spike recording with data compression and narrowband 400-MHz MC-FSK wireless transmission. In: 2010 Proceedings of ESSCIRC, pp 330–333

    Google Scholar 

  18. Lee SB, Lee H, Kiani M, et al (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4:360–371

    Article  Google Scholar 

  19. Abdelhalim K, Kokarovtseva L, Velazquez JLP, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48:2478–2493

    Article  Google Scholar 

  20. Gao H, Walker RM, Nuyujukian P, et al (2012) HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J Solid State Circuits 47:1043–1055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Türe, K., Dehollain, C., Maloberti, F. (2020). Introduction. In: Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications . Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-40826-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40826-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40825-1

  • Online ISBN: 978-3-030-40826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics