Skip to main content

Mechanism of Action of Allelochemicals

  • Chapter
  • First Online:
Allelopathy

Abstract

Allelopathy could be characterized as “an imperative component of plant impedance interceded by the addition of secondary metabolites produced by plants into the soil rhizosphere” (Weston, 2005). These secondary metabolites are typically exuded into the rhizosphere and affect the development of plants that are growing in the vicinity of allelopathic plants (Akemo, Regnier, & Bennett, 2000). Chemical compounds that inflict allelopathic impacts are called allelochemicals or allelochemics, which are by and large considered to be those chemical groups, for example, alkaloids, flavonoids, glucosinolates, phenolics and terpenoids (Reigosa, Souto, & Gonz, 1999). Natural products recognized with allelopathic potential have been classified into the following groups: (a) cytotoxic gases, (b) organic acids, (c) aromatic acids, (d) simple unsaturated lactones, (e) coumarins, (f) quinones, (g) flavonoids, (h) tannins, (i) alkaloids, and (j) terpenoids and steroids (Mushtaq & Siddiqui, 2018). Allelopathy has been well documented for many great years (Rice, 1984), however, the understanding of the mechanisms of the mode of action of allelochemicals stays darken (Mohamadi & Rajaie, 2009). Several biosynthetic pathways are responsible for the production of the various classes of these chemical compounds, though they are not necessary for primary processes of growth and reproduction for the allelopathic species (Pagare, Bhatia, Tripathi, Pagare, & Bansal, 2015). However, these compounds can influence plant development indirectly by modifying the interspecific competition for the plants in association (Abhilasha, Quintana, Vivanco, & Joshi, 2008). A wide array of these compounds are known today, however, just a limited number has been recognized as allelochemicals (Mushtaq & Siddiqui, 2018; Rice, 1984). Allelochemicals are predominantly present throughout the plant including leaves, stems, roots, rhizomes, inflorescence, pollen, fruits and seeds (An, Pratley, & Haig, 1998). The production of allelochemicals in a plant species may vary spatially and over time scale; Singh, Jhaldiyal, and Kumar (2009) found foliar and leaf litter leachates of Eucalyptus species more lethal than its bark leachates to some commercial crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilasha, D., Quintana, N., Vivanco, J., & Joshi, J. (2008). Do allelopathic compounds in invasive Solidago canadensis sl restrain the native European flora? Journal of Ecology, 96(5), 993–1001.

    Article  Google Scholar 

  • Akemo, M. C., Regnier, E. E., & Bennett, M. A. (2000). Weed suppression in spring-sown rye (Secale cereale)–pea (Pisum sativum) cover crop mixes. Weed Technology, 14(3), 545–549.

    Article  Google Scholar 

  • An, M., Pratley, J., & Haig, T. (1998). Allelopathy: From concept to reality. In Proceedings of the 9th Australian agronomy conference (pp. 563–566). Wagga, Australia: Australian Agronomy Society.

    Google Scholar 

  • Baar, J., Ozinga, W. A., Sweers, I. L., & Kuyper, T. W. (1994). Stimulatory and inhibitory effects of needle litter and grass extracts on the growth of some ectomycorrhizal fungi. Soil Biology and Biochemistry, 26(8), 1073–1079.

    Article  Google Scholar 

  • Batish, D. R., Singh, H. P., & Kaur, S. (2001). Crop allelopathy and its role in ecological agriculture. Journal of Crop Production, 4(2), 121–161.

    Article  CAS  Google Scholar 

  • Baziramakenga, R., Leroux, G. D., Simard, R. R., & Nadeau, P. (1997). Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Canadian Journal of Botany, 75(3), 445–450.

    Article  CAS  Google Scholar 

  • Baziramakenga, R., Simard, R. R., & Leroux, G. D. (1994). Effects of benzoic and cinnamic acid on growth, chlorophyll and mineral contents of soybean. Journal of Chemical Ecology, 20, 2821–2833.

    Article  CAS  PubMed  Google Scholar 

  • Bertin, C., Weston, L. A., Huang, T., Jander, G., Owens, T., Meinwald, J., & Schroeder, F. C. (2007). Grass roots chemistry: Meta-tyrosine, an herbicidal nonprotein amino acid. Proceedings of the National Academy of Sciences, 104(43), 16964–16969.

    Article  CAS  Google Scholar 

  • Blum, U. (2002). Soil solution concentrations of phenolic acids as influenced by evapotranspiration. Abstracts of the Third World Congress on Allelopathy (pp. 56).

    Google Scholar 

  • Bogatek, R., Oracz, K., & Gniazdowska, A. (2005). Ethylene and ABA production in germinating seeds during allelopathy stress. In Fourth world congress in allelopathy.

    Google Scholar 

  • Celik, T. A., & Aslanturk, O. S. (2010). Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with Allium test. Journal of Biomedicine and Biotechnology, 2010(189252), 1–8.

    Article  Google Scholar 

  • Cheng, H. H. (1992). A conceptual framework for assessing allelochemicals in the soil environment. In Allelopathy (pp. 21–29). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Chou, C. H. (1980). Allelopathic researches in the subtropical vegetation in Taiwan. Comparative Physiology and Ecology, 5(4), 222–234.

    CAS  Google Scholar 

  • Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., & Romagni, J. G. (2002). Chemicals from nature for weed management. Weed Science, 50(2), 138–151.

    Article  CAS  Google Scholar 

  • Einhellig, F. A. (2002). The physiology of allelochemical action: Clues and views. In M. J. Reigosa Roger & N. Pedrol (Eds.), Allelopathy from molecules to ecosystems (pp. 1–23). Enfield, UK: Science Publishers.

    Google Scholar 

  • Galindo, J. C., Hernández, A., Dayan, F. E., Tellez, M. R., Macıas, F. A., Paul, R. N., & Duke, S. O. (1999). Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 52(5), 805–813.

    Article  CAS  Google Scholar 

  • Gniazdowska, A., & Bogatek, R. (2005). Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, 27(3), 395–407.

    Article  CAS  Google Scholar 

  • Gulzar, A., Siddiqui, M. B., & Bi, S. (2016). Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma, 253(5), 1211–1221.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling and Behavior, 7(11), 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  • Ishak, M. S., & Sahid, I. (2014). Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species. AIP Conference Proceedings, 1614(1), 659–664.

    Article  Google Scholar 

  • Jensen, L. B., Courtois, B., Shen, L., Li, Z., Olofsdotter, M., & Mauleon, R. P. (2001). Locating genes controlling allelopathic effects against barnyard grass in upland rice. Agronomy Journal, 93(1), 21–26.

    Article  CAS  Google Scholar 

  • Khalid, S., Ahmad, T., & Shad, R. A. (2002). Use of Allelopathy in agriculture. Asian Journal of Plant Sciences, 3, 292–297.

    Google Scholar 

  • Mohamadi, N., & Rajaie, P. (2009). Effects of aqueous eucalyptus (E. camadulensis Labill) extracts on seed germination, seedling growth and physiological responses of Phaseolus vulgaris and Sorghum bicolor. Research Journal of Biological Sciences, 4(12), 1292–1296.

    Article  Google Scholar 

  • Muscolo, A., Panuccio, M. R., & Sidari, M. (2001). The effect of phenols on respiratory enzymes in seed germination. Plant Growth Regulation, 35(1), 31–35.

    Article  CAS  Google Scholar 

  • Mushtaq, W., Ain, Q., & Siddiqui, M. B. (2018). Screening of alleopathic activity of the leaves of Nicotiana plumbaginifolia Viv. on some selected crops in Aligarh, Uttar Pradesh, India. International Journal of Photochemistry and Photobiology, 2(1), 1–4.

    Article  Google Scholar 

  • Mushtaq, W., Ain, Q., Siddiqui, M. B., & Hakeem, K. U. R. (2019). Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: A weed versus weed allelopathy approach. Protoplasma, 256, 857. https://doi.org/10.1007/s00709-018-01343-1

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq, W., & Siddiqui, M. B. (2018). Allelopathy in Solanaceae plants. Journal of Plant Protection Research, 58(1), 1–7.

    CAS  Google Scholar 

  • Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293–304.

    Google Scholar 

  • Putnam, A. R. (1985). Weed allelopathy. Weed Physiology, 1, 131–155.

    CAS  Google Scholar 

  • Qasem, J. R., & Foy, C. L. (2001). Weed allelopathy, its ecological impacts and future prospects: A review. Journal of Crop Production, 4(2), 43–119.

    Article  CAS  Google Scholar 

  • Reigosa, M. J., Souto, X. C., & Gonz, L. (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 28(2), 83–88.

    Article  CAS  Google Scholar 

  • Rice, E. L. (1984). Allelopathy (2nd ed., p. 421). New York, NY: Academic Press.

    Google Scholar 

  • Rizvi, S. J. (2012). Allelopathy: Basic and applied aspects (p. 23). Berlin, Germany: Springer.

    Google Scholar 

  • Sheteawi, S. A., & Tawfik, K. M. (2007). Interaction. Effect of some biofertilizers and irrigation water regime on mung bean (Vigna radiata) growth and yield. Journal of Applied Scence and Research, 3(3), 251–262.

    Google Scholar 

  • Singh, A., Singh, D., & Singh, N. B. (2015). Allelopathic activity of Nicotiana plumbaginifolia at various phenological stages on sunflower. Allelopathy Journal, 36(2), 315–325.

    Google Scholar 

  • Singh, B., Jhaldiyal, V., & Kumar, M. (2009). Effects of aqueous leachates of multipurpose trees on test crops. Estonian Journal of Ecology, 58(1), 38–46.

    Article  Google Scholar 

  • Singh, B., Uniyal, A. K., & Todaria, N. P. (2008). Phytotoxic effects of three Ficus species on field crops. Range Management and Agroforestry, 29(2), 104–108.

    Google Scholar 

  • Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresource Technology, 101(14), 5677–5684.

    Article  CAS  PubMed  Google Scholar 

  • Weston, L. A. (2005). History and current trends in the use of allelopathy for weed management. Cornell University Turfgrass Times, 13, 529–534.

    Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., Haig, T., & Verbeek, B. (1998). Wheat allelopathic potential against an herbicide-resistant biotype annual ryegrass. In Proceedings of the Australian Agronomy Conference, Wagga, Australia (pp. 567–571).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, W., Siddiqui, M.B., Hakeem, K.R. (2020). Mechanism of Action of Allelochemicals. In: Allelopathy. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-40807-7_7

Download citation

Publish with us

Policies and ethics