Skip to main content

Introduction

  • Chapter
  • First Online:
Allelopathy

Part of the book series: SpringerBriefs in Agriculture ((BRIEFSAGRO))

  • 424 Accesses

Abstract

Weeds persistently contend with crops causing a substantial loss in their yield (Mushtaq & Siddiqui, 2018). Losses caused by weeds are far above the losses from any category of agronomic pests such as insects, diseases, nematodes, rodents, etc., (Abouziena & Haggag, 2016). An average reduction of 34% is caused by weeds in crop production (Oerke, 2006). Some commercial crops that suffer reductions in their harvest due to weeds are as follows: wheat 23%, potatoes 30%, cotton 36%, rice 37%, soybeans 37%, and maize 40% (Oerke, 2006). Weeds acquire a serious share of applied fertilizers and reduce their accessibility to crops (Bajwa, 2014; Guglielmini, Verdu, & Satorre, 2017). They restrain the crop plants to the available light, moisture, and space as well (Guglielmini et al., 2017). Moreover, they decline the standard of crops, obstruct water channels, disturb human health, cause fire threats, and appear unpleasant in recreation areas like gardens, pools, parks, pavements, and pathways (Singh, Batish, & Kohli, 2003). Therefore, weeds are recognized as severe plant pests ever since the ancestral days (Zimdahl, 2013). They have constantly engaged with the agricultural practices which made it necessary to adopt certain measures to look for their control (Zimdahl, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouziena, H. F., & Haggag, W. M. (2016). Weed control in clean agriculture: A review. Planta Daninha, 34(2), 377–392.

    Article  Google Scholar 

  • Anonymous. (2007). Vision 2025. NRCWS perspective plan. New Delhi, India: Indian Council of Agricultural Research (ICAR).

    Google Scholar 

  • Bajwa, A. A. (2014). Sustainable weed management in conservation agriculture. Crop Protection, 65, 105–113.

    Article  Google Scholar 

  • Chauvel, B., Guillemin, J. P., Gasquez, J., & Gauvrit, C. (2012). History of chemical weeding from 1944 to 2011 in France: Changes and evolution of herbicide molecules. Crop Protection, 42, 320–326.

    Article  CAS  Google Scholar 

  • Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., & Romagni, J. G. (2002). Chemicals from nature for weed management. Weed Science, 50(2), 138–151.

    Article  CAS  Google Scholar 

  • Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., & Siddique, K. H. (2011). The role of allelopathy in agricultural pest management. Pest Management Science, 67(5), 493–506.

    Article  CAS  Google Scholar 

  • Guglielmini, A. C., Verdu, A. M. C., & Satorre, E. H. (2017). Competitive ability of five common weed species in competition with soybean. International Journal of Pest Management, 63(1), 30–36.

    Article  Google Scholar 

  • Harker, K. N. (2013). Slowing weed evolution with integrated weed management. Canadian Journal of Plant Science, 93(5), 759–764.

    Article  Google Scholar 

  • Heady, H., & Child, R. D. (1999). Rangeland ecology and management (pp. 885–902). Boulder, CO: Westview Press.

    Google Scholar 

  • Hussain, M. I., Gonzalez, L., & Reigosa, M. J. (2011). Allelopathic potential of Acacia melanoxylon on the germination and root growth of native species. Weed Biology and Management, 11(1), 18–28.

    Article  Google Scholar 

  • Inderjit, Seastedt, T. R., Callaway, R. M., Pollock, J. L., & Kaur, J. (2008). Allelopathy and plant invasions: Traditional, congeneric, and bio-geographical approaches. Biological Invasions, 10(6), 875–890.

    Article  Google Scholar 

  • Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Allelopathy (pp. 349–385). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65.

    Article  Google Scholar 

  • Javed, S., Javaid, A., & Shoaib, A. (2014). Herbicidal activity of some medicinal plants extracts against Parthenium hysterophorus L. Pakistan Journal of Weed Science Research, 20(3), 279–291.

    Google Scholar 

  • Khanh, T. D. (2007). Role of allelochemicals for weed management in rice. Allelopathy Journal, 19, 85–96.

    Google Scholar 

  • Khanh, T. D., Chung, M. I., Xuan, T. D., & Tawata, S. (2005). The exploitation of crop allelopathy in sustainable agricultural production. Journal of Agronomy and Crop Science, 191(3), 172–184.

    Article  Google Scholar 

  • Ladhari, A., Omezzine, F., Dellagreca, M., Zarrelli, A., & Haouala, R. (2013). Phytotoxic activity of Capparis spinosa L. and its discovered active compounds. Allelopathy Journal, 32(2), 175–190.

    Google Scholar 

  • Mushtaq, W., & Siddiqui, M. B. (2018). Allelopathy in Solanaceae plants. Journal of Plant Protection Research, 58(1), 1–7.

    CAS  Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31–43.

    Article  Google Scholar 

  • Pan, L., Li, X. Z., Yan, Z. Q., Guo, H. R., & Qin, B. (2015). Phytotoxicity of umbelliferone and its analogs: Structure–activity relationships and action mechanisms. Plant Physiology and Biochemistry, 97, 272–277.

    Article  CAS  Google Scholar 

  • Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O’connell, C., & Tsomondo, T. (2001). Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment, 84(1), 1–20.

    Article  Google Scholar 

  • Qasem, J. R., & Foy, C. L. (2001). Weed allelopathy, its ecological impacts and future prospects: A review. Journal of Crop Production, 4(2), 43–119.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., & Kohli, R. K. (2003). Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Critical Reviews in Plant Sciences, 22, 239–311.

    Article  CAS  Google Scholar 

  • Sodaeizadeh, H., Rafieiolhossaini, M., & Van Damme, P. (2010). Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Industrial Crops and Products, 31(2), 385–394.

    Article  CAS  Google Scholar 

  • Tabaglio, V., Marocco, A., & Schulz, M. (2013). Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems. Italian Journal of Agronomy, 8(1), 1–5.

    Article  Google Scholar 

  • Tesio, F., & Ferrero, A. (2010). Allelopathy, a chance for sustainable weed management. International Journal of Sustainable Development and World Ecology, 17(5), 377–389.

    Article  Google Scholar 

  • Varshney, J. G., & Babu, M. B. B. P. (2008). Future scenario of weed management in India. Indian Journal of Weed Science, 40(1), 1–9.

    Google Scholar 

  • Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58, 1631–1636.

    Article  CAS  Google Scholar 

  • Young, S. L., Pierce, F. J., & Nowak, P. (2014). Introduction: Scope of the problem—Rising costs and demand for environmental safety for weed control. In Automation: The future of weed control in cropping systems (pp. 1–8). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Zeng, R. S. (2014). Allelopathy-the solution is indirect. Journal of Chemical Ecology, 40(6), 515–516.

    Article  CAS  Google Scholar 

  • Zimdahl, R. L. (2013). Fundamentals of weed science (4th ed., p. 664). San Diego, CA: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, W., Siddiqui, M.B., Hakeem, K.R. (2020). Introduction. In: Allelopathy. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-40807-7_1

Download citation

Publish with us

Policies and ethics