Skip to main content

Solar Hydrogen’s Role for a Sustainable Future

  • Chapter
  • First Online:
Accelerating the Transition to a 100% Renewable Energy Era

Part of the book series: Lecture Notes in Energy ((LNEN,volume 74))

Abstract

In this study, hydrogen’s role during the transition to 100% renewable energy systems is discussed thoroughly, and the importance of sustainable hydrogen production is highlighted. For a successful transition to hydrogen-based renewable energy systems, hydrogen has to be produced in a clean, reliable, affordable, efficient, and safe manner. Therefore, in the second part of this study, a comprehensive life cycle assessment of solar hydrogen production options is conducted. The selected clean hydrogen production options are steam methane reforming, conventional electrolysis, photoelectrochemical cells, PV electrolysis, and photocatalysis. A complete source to service approach is taken when evaluating the environmental and technical performance of the selected hydrogen production options. Greenhouse gas (GHG) emissions, resource use, fossil fuel use, water use, energy and exergy efficiencies, and cost of hydrogen are the selected sustainability performance criteria. The selected hydrogen production methods are compared based on these performance criteria. In the next part, the performance evaluation results of each option are normalized and ranked in the 0–10 range where 0 gives the least sustainable manner, and 10 is the hypothetical ideal case where there is no damage to the environment, zero resource and water use, and 100% energy and exergy efficiencies, and zero cost. The GHG emissions, resource use, fossil fuel use, and water use results indicate that photoelectrochemical cells (PEC) is the most advantageous. Steam methane reforming has the highest efficiencies and the lowest. When all of the selected performance criteria are considered together, PEC has the highest sustainability rankings (5.24/10), and steam methane reforming has the lowest (3.24/10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849

    Article  Google Scholar 

  • Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 40(11):1449–1473

    Article  Google Scholar 

  • Ahmed M, Dincer I (2018) A review on photoelectrochemical hydrogen production systems: challenges and future directions. Int J Hydrogen Energy 44(5):2474–2507

    Article  Google Scholar 

  • Bhattacharyya R, Misra A, Sandeep KC (2017) Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Convers Manag 133:1–13

    Article  Google Scholar 

  • Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrogen Energy 44(12):5799–5811

    Article  Google Scholar 

  • Dahbi S, Aboutni R, Aziz A, Benazzi N, Elhafyani M, Kassmi K (2016) Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller. Int J Hydrogen Energy 41(45):20858–20866

    Article  Google Scholar 

  • De Crisci AG, Moniri A, Xu Y (2018) Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. Int J Hydrogen Energy 44(3):1299–1327

    Article  Google Scholar 

  • Dincer I, Acar C (2017) Innovation in hydrogen production. Int J Hydrogen Energy 42(22):14843–14864

    Article  Google Scholar 

  • Ding Q, Song B, Xu P, Jin S (2016) Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1(5):699–726

    Article  Google Scholar 

  • Esmieu C, Raleiras P, Berggren G (2018) From protein engineering to artificial enzymes–biological and biomimetic approaches towards sustainable hydrogen production. Sustain Energy Fuels 2(4):724–750

    Article  Google Scholar 

  • Fan W, Yu X, Lu HC, Bai H, Zhang C, Shi W (2016) Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl Catal B 181:7–15

    Article  Google Scholar 

  • Gross MA, Creissen CE, Orchard KL, Reisner E (2016) Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO. Chem Sci 7(8):5537–5546

    Article  Google Scholar 

  • He Z, Fu J, Cheng B, Yu J, Cao S (2017) Cu2(OH)2CO3 clusters: novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Appl Catal B 205:104–111

    Article  Google Scholar 

  • Huang PH, Kuo JK, Wu ZD (2016) Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production. Int J Hydrogen Energy 41(20):8514–8524

    Article  Google Scholar 

  • Im-orb K, Visitdumrongkul N, Saebea D, Patcharavorachot Y, Arpornwichanop A (2018) Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production. J Clean Prod 170:1–13

    Article  Google Scholar 

  • Jiang Z, Wang B, Jimmy CY, Wang J, An T, Zhao H, Li H, Yuan S, Wong PK (2018) AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy 46:234–240

    Article  Google Scholar 

  • Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex Eng J 55(1):427–443

    Article  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Biores Technol 243:1194–1206

    Article  Google Scholar 

  • Kumari S, White RT, Kumar B, Spurgeon JM (2016) Solar hydrogen production from seawater vapor electrolysis. Energy Environ Sci 9(5):1725–1733

    Article  Google Scholar 

  • Kwon KC, Choi S, Hong K, Moon CW, Shim YS, Kim DH, Kim T, Sohn W, Jeon JM, Lee CH, Nam KT (2016) Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ Sci 9(7):2240–2248

    Article  Google Scholar 

  • Lee SH, Bhopal MF, Lee DW, Lee SH (2018) Review of advanced hydrogen passivation for high efficient crystalline silicon solar cells. Mater Sci Semicond Process 79:66–73

    Article  Google Scholar 

  • Morales-Guio CG, Liardet L, Mayer MT, Tilley SD, Grätzel M, Hu X (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew Chem 127(2):674–677

    Article  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    Article  Google Scholar 

  • Saeedmanesh A, Mac Kinnon MA, Brouwer J (2018) Hydrogen is essential for sustainability. Curr Opin Electrochem 12:166–181

    Article  Google Scholar 

  • Santos JL, Reina TR, Ivanov I, Penkova A, Ivanova S, Tabakova T, Centeno MA, Idakiev V, Odriozola JA (2018) Multicomponent Au/Cu-ZnO-Al2O3 catalysts: robust materials for clean hydrogen production. Appl Catal A 558:91–98

    Article  Google Scholar 

  • Shaner MR, Atwater HA, Lewis NS, McFarland EW (2016) A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ Sci 9(7):2354–2371

    Article  Google Scholar 

  • Sharma K (2019) Carbohydrate-to-hydrogen production technologies: a mini-review. Renew Sustain Energy Rev 105:138–143

    Article  Google Scholar 

  • Shinagawa T, Takanabe K (2017) Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. ChemSusChem 10(7):1318–1336

    Article  Google Scholar 

  • Show KY, Yan Y, Ling M, Ye G, Li T, Lee DJ (2018) Hydrogen production from algal biomass–advances, challenges and prospects. Biores Technol 257:290–300

    Article  Google Scholar 

  • Tebibel H, Khellaf A, Menia S, Nouicer I (2017) Design, modelling and optimal power and hydrogen management strategy of an off grid PV system for hydrogen production using methanol electrolysis. Int J Hydrogen Energy 42(22):14950–14967

    Article  Google Scholar 

  • Tong X, Zhou Y, Jin L, Basu K, Adhikari R, Selopal GS, Zhao H, Sun S, Vomiero A, Wang ZM, Rosei F (2017) Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 31:441–449

    Article  Google Scholar 

  • Tsai KA, Hsu YJ (2015) Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Appl Catal B 164:271–278

    Article  Google Scholar 

  • Wang J, Yin Y (2018) Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sustain Energy Rev 92:284–306

    Article  Google Scholar 

  • Wang B, Shen S, Mao SS (2017) Black TiO2 for solar hydrogen conversion. J Mater 3(2):96–111

    Google Scholar 

  • Zhang J, Wang X (2015) Solar water splitting at λ = 600 nm: a step closer to sustainable hydrogen production. Angew Chem Int Ed 54(25):7230–7232

    Article  Google Scholar 

  • Zhang X, Meng F, Mao S, Ding Q, Shearer MJ, Faber MS, Chen J, Hamers RJ, Jin S (2015a) Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ Sci 8(3):862–868

    Article  Google Scholar 

  • Zhang J, Wang L, Liu X, Li XA, Huang W (2015b) High-performance CdS–ZnS core–shell nanorod array photoelectrode for photoelectrochemical hydrogen generation. J Mater Chem A 3(2):535–541

    Article  Google Scholar 

  • Zhang H, Ding Q, He D, Liu H, Liu W, Li Z, Yang B, Zhang X, Lei L, Jin S (2016) A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ Sci 9(10):3113–3119

    Article  Google Scholar 

  • Zheng XL, Song JP, Ling T, Hu ZP, Yin PF, Davey K, Du XW, Qiao SZ (2016) Strongly coupled nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv Mater 28(24):4935–4942

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Acar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acar, C. (2020). Solar Hydrogen’s Role for a Sustainable Future. In: Uyar, T. (eds) Accelerating the Transition to a 100% Renewable Energy Era. Lecture Notes in Energy, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-030-40738-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40738-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40737-7

  • Online ISBN: 978-3-030-40738-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics