Skip to main content

Abstract

This chapter provides a technical overview and the necessary background for existing controller synthesis methods that have been applied for navigation and control of UAVs. These include linear controllers (PID, LQR, LQG, etc.), backstepping, sliding mode, nonlinear model predictive, adaptive, dynamic inversion, fuzzy logic and neural networks, gain scheduling, \(H_\infty \) and \(\mu \)-synthesis [1, 2]. The distinctive advantages and drawbacks for each technique are investigated with respect to applicability to the family of new generation UAVs with time-varying aerodynamic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michailidis MG, Rutherford MJ, Valavanis KP (2019) A survey of controller designs for new generation UAVs: The challenge of uncertain aerodynamic parameters. Int J Control, Autom Syst

    Google Scholar 

  2. Michailidis MG (2019) Nonlinear controller design for UAVs with time-varying aerodynamic uncertainties. Doctoral dissertation, University of Denver

    Google Scholar 

  3. Ollero A, Merino L (2004) Control and perception techniques for aerial robotics. Annu Rev Control 28(2):167–178

    Article  Google Scholar 

  4. Puri A (2005) A survey of unmanned aerial vehicles (UAV) for traffic surveillance. University of South Florida, Department of computer science and engineering

    Google Scholar 

  5. Chen H, Wang XM, Li Y (2009) A survey of autonomous control for UAV. In: IEEE international conference on artificial intelligence and computational intelligence (AICI), pp 267–271

    Google Scholar 

  6. Albaker BM, Rahim NA (2009) A survey of collision avoidance approaches for unmanned aerial vehicles. In: International conference for technical postgraduates (TECHPOS), pp 1–7

    Google Scholar 

  7. Goerzen C, Kong Z, Mettler B (2010) A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J Intell Robot Syst 57(1–4):65

    Article  MATH  Google Scholar 

  8. Chao H, Cao Y, Chen Y (2010) Autopilots for small unmanned aerial vehicles: a survey. Int J Control, Autom Syst 8(1):36–44

    Article  Google Scholar 

  9. Adams SM, Friedland CJ (2011) A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In: International workshop on remote sensing for disaster response

    Google Scholar 

  10. Dadkhah N, Mettler B (2012) Survey of motion planning literature in the presence of uncertainty: considerations for UAV guidance. J Intell Robot Syst 65(1–4):233–246

    Article  Google Scholar 

  11. Cai G, Dias J, Seneviratne L (2014) A survey of small-scale unmanned aerial vehicles: recent advances and future development trends. Unmanned Syst 2(2):175–199

    Article  Google Scholar 

  12. Gupta L, Jain R, Vaszkun G (2016) Survey of important issues in UAV communication networks. IEEE Commun Surv Tutor 18(2):1123–1152

    Article  Google Scholar 

  13. Lu Y, Xue Z, Xia GS, Zhang L (2018) A survey on vision-based UAV navigation. Geo-Spat Inf Sci

    Google Scholar 

  14. Adami TM, Zhu JJ (2011) 6DOF flight control of fixed-wing aircraft by trajectory linearization. In: IEEE American control conference (ACC), pp 1610–1617

    Google Scholar 

  15. Alvarenga J, Vitzilaios NI, Valavanis KP, Rutherford MJ (2015) Survey of unmanned helicopter model-based navigation and control techniques. J Intell Robot Syst 80(1):87–138

    Article  Google Scholar 

  16. Jetley P, Sujit PB, Saripalli S (2017) Safe landing of fixed wing UAVs. In: IEEE international conference on dependable systems and networks workshop (DSN-W), pp 2–9

    Google Scholar 

  17. Pandey AK, Chaudhary T, Mishra S, Verma S (2018) Longitudinal control of small unmanned aerial vehicle by PID controller. Intelligent communication, control and devices. Springer, Berlin, pp 923–931

    Google Scholar 

  18. Poksawat P, Wang L, Mohamed A (2017) Gain scheduled attitude control of fixed-wing UAV with automatic controller tuning. IEEE Trans Control Syst Technol

    Google Scholar 

  19. Espinoza-Fraire T, Dzul A, Cortes-Martinez F, Giernacki W (2018) Real-time implementation and flight tests using linear and nonlinear controllers for a fixed-wing miniature aerial vehicle (MAV). Int J Control, Autom Syst 16(1):392–396

    Article  Google Scholar 

  20. Sarhan A, Qin S (2017) Robust adaptive flight controller for UAV systems. In: IEEE international conference on information science and control engineering (ICISCE), pp 1214–1219

    Google Scholar 

  21. Lyapunov AM (1992) The general problem of the stability of motion. Int J Control 55(3):531–534

    Article  MathSciNet  Google Scholar 

  22. Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, Hoboken

    Google Scholar 

  23. Harkegard O (2003) Backstepping and control allocation with applications to flight control. PhD thesis, Linkopings universitet

    Google Scholar 

  24. Ren W, Atkins E (2005) Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit

    Google Scholar 

  25. Brezoescu A, Espinoza T, Castillo P, Lozano R (2013) Adaptive trajectory following for a fixed-wing UAV in presence of crosswind. J Intell Robot Syst

    Google Scholar 

  26. Yoon S, Kim Y, Park S (2012) Constrained adaptive backstepping controller design for aircraft landing in wind disturbance and actuator stuck. Int J Aeronaut Space Sci 13(1):74–89

    Article  Google Scholar 

  27. Wang YC, Chen WS, Zhang SX, Zhu JW, Cao LJ (2018) Command-filtered incremental backstepping controller for small unmanned aerial vehicles. J Guid, Control, Dyn 41(4):954–967

    Article  Google Scholar 

  28. Afandi MNRBM, Hassan MB, Suhardi G, Zhou Y, Danny L (2017) Comparison of backstepping, fuzzy-PID, and PID control techniques using X8 model in relation to \(A^{*}\) path planning. In: IEEE international conference on intelligent transportation engineering (ICITE), pp 340–345

    Google Scholar 

  29. Utkin V (2009) Sliding mode control. Nonlinear, distributed, and time delay systems, control, systems, robotics and automation

    Google Scholar 

  30. Vaidyanathan S, Lien CH (2017) Applications of sliding mode control in science and engineering. Springer, Berlin

    Google Scholar 

  31. Khalil HK (2014) Nonlinear control. Prentice Hall, Upper Saddle River

    Google Scholar 

  32. Castaneda H, Salas-Pena OS, de Leon-Morales J (2017) Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans 66:226–232

    Article  Google Scholar 

  33. Zheng Z, Jin Z, Sun L, Zhu M (2017) Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles. IEEE Access 5:5556–5565

    Article  Google Scholar 

  34. Espinoza-Fraire AT, Chen Y, Dzul A, Lozano R, Juarez R (2018) Fixed-wing MAV adaptive PD control based on a modified MIT rule with sliding-mode control. J Intell Robot Syst

    Google Scholar 

  35. Lu B, Fang Y, Sun N (2018) Continuous sliding mode control strategy for a class of nonlinear underactuated systems. IEEE Trans Autom Control

    Google Scholar 

  36. Perozzi G, Efimov D, Biannic JM, Planckaert L, Coton P (2017) Wind rejection via quasi-continuous sliding mode technique to control safely a mini drone. In: European conference for aeronautics and space science

    Google Scholar 

  37. Rios H, Gonzalez-Sierra J, Dzul A (2017) Robust tracking output-control for a quad-rotor: a continuous sliding-mode approach. J Frankl Inst 354(15):6672–6691

    Article  MathSciNet  MATH  Google Scholar 

  38. Munoz-Vazquez AJ, Parra-Vega V, Sanchez-Orta A (2017) Continuous fractional-order sliding PI control for nonlinear systems subject to non-differentiable disturbances. Asian J Control 19(1):279–288

    Article  MathSciNet  MATH  Google Scholar 

  39. Espinoza T, Dzul AE, Lozano R, Parada P (2014) Backstepping-sliding mode controllers applied to a fixed-wing UAV. J Intell Robot Syst 73(1–4):67–79

    Article  Google Scholar 

  40. Ru P, Subbarao K (2017) Nonlinear model predictive control for unmanned aerial vehicles. Aerospace 4(2)

    Article  Google Scholar 

  41. Ulker H, Baykara C, Ozsoy C (2017) Design of MPCs for a fixed wing UAV. Aircr Eng Aerosp Technol 89(6):893–901

    Article  Google Scholar 

  42. Eren U, Prach A, Kocer BB, Rakovic SV, Kayacan E, Acikmese B (2017) Model predictive control in aerospace systems: current state and opportunities. J Guid, Control, Dyn

    Article  Google Scholar 

  43. Kang Y, Hedrick JK (2009) Linear tracking for a fixed-wing UAV using nonlinear model predictive control. IEEE Trans Control Syst Technol 17(5):1202–1210

    Article  Google Scholar 

  44. Yang K, Kang Y, Sukkarieh S (2013) Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle. Int J Control, Autom Syst 11(1):65–74

    Article  Google Scholar 

  45. Stastny TJ, Dash A, Siegwart R (2017) Nonlinear MPC for fixed-wing UAV trajectory tracking: implementation and flight experiments. In: AIAA guidance, navigation, and control conference

    Google Scholar 

  46. Gavilan F, Vazquez R, Lobato A, de la Rosa M, Gallego A, Camacho EF, Hardt MW, Navarro FA (2018) Increasing predictability and performance in UAS flight contingencies using AIDL and MPC. In: AIAA guidance, navigation, and control conference

    Google Scholar 

  47. Jain RPK, Aguiar AP, Alessandretti A, Borges de Sousa J (2018) Moving path following control of constrained underactuated vehicles: a nonlinear model predictive control approach. In: AIAA information systems - AIAA infotech aerospace

    Google Scholar 

  48. Astrom KJ, Wittenmark B (2013) Adaptive control. Courier Corporation

    Google Scholar 

  49. Bellman RE (2015) Adaptive control processes: a guided tour. Princeton University Press, Princeton

    Google Scholar 

  50. Gavilan F, Acosta JA, Vazquez R (2011) Control of the longitudinal flight dynamics of an UAV using adaptive backstepping. IFAC Proc Vol 44(1):1892–1897

    Article  Google Scholar 

  51. Ambati PR, Padhi R (2017) Robust auto-landing of fixed-wing UAVs using neuro-adaptive design. IFAC Control Eng Pract 60:218–232

    Article  Google Scholar 

  52. de Oliveira HA, Rosa PFF (2017) Adaptive genetic neuro-fuzzy attitude control for a fixed wing UAV. In: IEEE international conference on industrial technology (ICIT), pp 726–731

    Google Scholar 

  53. Noble D, Bhandari S (2017) Neural network based nonlinear model reference adaptive controller for an unmanned aerial vehicle. In: IEEE international conference on unmanned aircraft systems (ICUAS), pp 94–103

    Google Scholar 

  54. Ioannou PA, Sun J (2010) Robust adaptive control. Prentice-Hall, Upper Saddle River (Reprint)

    Google Scholar 

  55. Hespanha JP, Liberzon D, Morse AS (2003) Overcoming the limitations of adaptive control by means of logic-based switching. Syst Control Lett 49(1):49–65

    Article  MathSciNet  MATH  Google Scholar 

  56. Stefanovic M, Safonov MG (2011) Safe adaptive control: data-driven stability analysis and robust synthesis. Springer, Berlin

    Google Scholar 

  57. Long L, Zhao J (2017) Adaptive control for a class of high-order switched nonlinearly parameterized systems. Int J Robust Nonlinear Control 27(4):547–565

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang H, Wang Z, Liu YJ, Tong S (2017) Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst 316:35–48

    Article  MathSciNet  MATH  Google Scholar 

  59. Li Y, Sui S, Tong S (2017) Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans Cybern 47(2):403–414

    Google Scholar 

  60. Li Y, Tong S (2017) Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans Cybern 47(4):1007–1016

    Article  Google Scholar 

  61. Cho SJ, Lee JS, Kim J, Kuc TY, Chang PH, Jin M (2017) Adaptive time-delay control with a supervising switching technique for robot manipulators. Trans Inst Meas Control 39(9):1374–1382

    Article  Google Scholar 

  62. Enns D, Bugajski D, Hendrick R, Stein G (1994) Dynamic inversion: an evolving methodology for flight control design. Int J Control 59(1):71–91

    Article  MATH  Google Scholar 

  63. Kawakami Y, Uchiyama K (2017) Nonlinear controller design for transition flight of a fixed-wing UAV with input constraints. In: AIAA guidance, navigation, and control conference

    Google Scholar 

  64. Chang H, Liu Y, Wang Y, Zheng X (2017) A modified nonlinear dynamic inversion method for attitude control of UAVs under persistent disturbances. In: IEEE international conference on information and automation (ICIA), pp 715–721

    Google Scholar 

  65. Smeur EJ, de Croon GCHE, Chu Q (2018) Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection. Control Eng Pract 73:79–90

    Article  Google Scholar 

  66. Amlashi AH, Gharamaleki RM, Nejad MHH, Mirzaei M (2018) Design of estimator-based nonlinear dynamic inversion controller and nonlinear regulator for robust trajectory tracking with aerial vehicles. Int J Dyn Control 6(2):707–725

    Article  MathSciNet  Google Scholar 

  67. Silva NB, Fontes JV, Inoue RS, Branco KR (2018) Dynamic inversion and gain-scheduling control for an autonomous aerial vehicle with multiple flight stages. J Control, Autom Electr Syst 29(3):328–339

    Article  Google Scholar 

  68. Kurnaz S, Cetin O, Kaynak O (2009) Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. J Intell Robot Syst 54(1–3):229–244

    Article  Google Scholar 

  69. Espinoza T, Dzul A, Llama M (2013) Linear and nonlinear controllers applied to fixed-wing UAV. Int J Adv Robot Syst 10(1)

    Article  Google Scholar 

  70. Lee T, Kim Y (2001) Nonlinear adaptive flight control using backstepping and neural networks controller. J Guid, Control, Dyn 24(4):675–682

    Article  Google Scholar 

  71. Kayacan E, Khanesar MA, Rubio-Hervas J, Reyhanoglu M (2017) Learning control of fixed-wing unmanned aerial vehicles using fuzzy neural networks. Int J Aerosp Eng

    Google Scholar 

  72. de Oliveira HA, Rosa PFF (2017) Genetic neuro-fuzzy approach for unmanned fixed wing attitude control. In: IEEE international conference on military technologies (ICMT), pp 485–492

    Google Scholar 

  73. Santoso F, Garratt MA, Anavatti SG (2018) State-of-the-art intelligent flight control systems in unmanned aerial vehicles. IEEE Trans Autom Sci Eng 15(2):613–627

    Article  Google Scholar 

  74. Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36(10):1401–1425

    Article  MathSciNet  MATH  Google Scholar 

  75. Marcos A, Balas GJ (2004) Development of linear-parameter-varying models for aircraft. J Guid Control Dyn 27(2):218–228

    Article  Google Scholar 

  76. Girish CV, Emilio F, Jonathan HP, Hugh L (2015) Nonlinear flight control techniques for unmanned aerial vehicles. Handbook of unmanned aerial vehicles. Springer, Berlin, pp 577–612

    Google Scholar 

  77. Shao P, Zhou Z, Ma S, Bin L (2017) Structural robust gain-scheduled PID control and application on a morphing wing UAV. In: IEEE Chinese control conference (CCC), pp 3236–3241

    Google Scholar 

  78. Yue T, Wang L, Ai J (2017) Longitudinal integrated linear parameter varying control for morphing aircraft in large flight envelope. In: AIAA atmospheric flight mechanics conference

    Google Scholar 

  79. Stephan J, Fichter W (2018) Gain-scheduled multivariable flight control under uncertain trim conditions. In: AIAA guidance, navigation, and control conference

    Google Scholar 

  80. Petersen IR, Ugrinovskii VA, Savkin AV (2012) Robust control design using \(H_\infty \) methods. Springer Science & Business Media

    Google Scholar 

  81. Glover K (2015) H-infinity control. Encyclopedia of systems and control

    Google Scholar 

  82. Ferreira HC, Baptista RS, Ishihara JY, Borges GA (2011) Disturbance rejection in a fixed wing UAV using nonlinear \(H_\infty \) state feedback. In: IEEE international conference on control and automation (ICCA), pp 386–391

    Google Scholar 

  83. Lesprier J, Biannic JM, Roos C (2015) Modeling and robust nonlinear control of a fixed-wing UAV. In: IEEE conference on control applications (CCA), pp 1334–1339

    Google Scholar 

  84. Biannic JM, Roos C, Lesprier J (2017) Nonlinear structured \(H_\infty \) controllers for parameter-dependent uncertain systems with application to aircraft landing. AerospaceLab J

    Google Scholar 

  85. Kung CC (2008) Nonlinear \(H_\infty \) robust control applied to F-16 aircraft with mass uncertainty using control surface inverse algorithm. J Frankl Inst 345(8):851–876

    Article  MathSciNet  MATH  Google Scholar 

  86. Garcia GA, Kashmiri S, Shukla D (2017) Nonlinear control based on H-infinity theory for autonomous aerial vehicle. In: IEEE international conference on unmanned aircraft systems (ICUAS), pp 336–345

    Google Scholar 

  87. Balas GJ, Doyle JC, Glover K, Packard A, Smith R (1993) \(\mu \)-analysis and synthesis toolbox. MUSYN Inc. and The MathWorks

    Google Scholar 

  88. Balas G, Chiang R, Packard A, Safonov M (2005) Robust control toolbox, for use with matlab. User’s Guide

    Google Scholar 

  89. Yin G, Chen N, Li P (2007) Improving handling stability performance of four-wheel steering vehicle via \(\mu \)-synthesis robust control. IEEE Trans Veh Technol 56(5):2432–2439

    Article  Google Scholar 

  90. Qiu L, Fan G, Yi J, Yu W (2009) Robust hybrid Controller design based on feedback linearization and \(\mu \)-synthesis for UAV. In: IEEE international conference on intelligent computation technology and automation (ICICTA), pp 858–861

    Google Scholar 

  91. Michailidis MG, Kanistras K, Agha M, Rutherford MJ, Valavanis KP (2018) Nonlinear control of fixed-wing UAVs with time-varying aerodynamic uncertainties via \(\mu \)-synthesis. In: IEEE conference on decision and control (CDC), pp 6314–6321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail G. Michailidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michailidis, M.G., Valavanis, K.P., Rutherford, M.J. (2020). Literature Review. In: Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties. Springer Tracts in Autonomous Systems, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-40716-2_2

Download citation

Publish with us

Policies and ethics