Skip to main content

Numerical Simulation of Ski-Jump Hydraulic Behavior

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11974))

Abstract

The hydraulic behavior of ski jumps is investigated numerically using the OpenFOAM digital library. A number of ski-jump cases has been simulated by following the RANS approach (Reynolds Averaged Navier-Stokes equations), using the k-ω SST closure model, and the VoF technique (Volume of Fluid) for the tracking of the free surface. Particular attention is given to the pressure distributions in the zone of impact of the falling jet, and to the length of the jet itself, as defined as the distance along the x-direction between the point of maximum dynamic pressure head, and the origin of the reference frame. A chart is proposed reporting the correlation line (and correspondent formal expression) between the approach Froude numbers and the lengths of the jets, in the limit of other parameters tested. The chart may serve as a useful tool for the determination of the length of the jet taking off from the bucket, starting from the value of the approach Froude number.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bathe, R.R., More, K.T., Bhajantri, M.R., Bhosekar, V.V.: Hydraulic model studies for optimizing the design of two tier spillway. ISH J. Hydraulic Eng. 25, 28–37 (2019)

    Article  Google Scholar 

  2. De Lara, R., Ota, J.J., Fabiani, A.L.T.: Reduction of the erosive effects of effluent jets from spillways by contraction of the flow. Brasilian J. Water Resour. 23 (2018). Art. E11

    Google Scholar 

  3. Deng, J., Wei, W., Tian, Z., Zhang, F.: Ski jump hydraulics of leak-floor flip bucket. In: 7th International Symposium on Hydraulic Structures, 15–18 May Aachen, Germany (2018)

    Google Scholar 

  4. Gou, W., Li, H., Du, Y., Yin, H., Liu, F., Lian, J.: Effect of sediment concentration on hydraulic characteristic of energy dissipation in a falling turbulent jet. Appl. Sci. 8 (2018). Art. 1672

    Article  Google Scholar 

  5. Felder, S., Chanson, H.: Scale effects in microscopic air-water flow properties in high-velocity free-surface flows. Exp. Thermal Fluid Sci. 83, 19–36 (2017)

    Article  Google Scholar 

  6. Xu, W.L., Luo, S.J., Zheng, Q.W., Luo, J.: Experimental study on pressure and aeration characteristics in stepped chute flow. Sci. China Technol. Sci. 58, 720–726 (2015)

    Article  Google Scholar 

  7. Li, N., Liu, C., Deng, J., Zhang, X.: Theoretical and experimental studies of the flaring gate pier on the surface spillway in a high-arch dam. J. Hydrodyn. 24, 496–505 (2012)

    Article  Google Scholar 

  8. Wu, J., Ma, F., Yao, L.: Hydraulic characteristics of slit-type energy dissipater. J. Hydrodyn. 24, 883–887 (2012)

    Article  Google Scholar 

  9. Deng, J., Wei, W., Tian, Z., Zhang, F.: Design of a streamwise lateral ski-jump flow discharge spillway. Water 10 (2018). Art. 1585

    Article  Google Scholar 

  10. Chanson, H.: Aeration of a free jet above a spillway. IAHR J. Hydraulic Res. 29, 655–667 (1991)

    Article  Google Scholar 

  11. Juon, R., Hager, W.H.: Flip bucket without and with deflectors. ASCE J. Hydraulic Eng. 11, 837–845 (2000)

    Article  Google Scholar 

  12. Heller, V., Hager, W.H., Minor, H.E.: Ski jump hydraulics. ASCE J. Hydraulic Eng. 5, 347–355 (2005)

    Article  Google Scholar 

  13. Alfonsi, G.: Reynolds averaged Navier-Stokes equations for turbulence modeling. Appl. Mech. Rev. 63 (2009). Art. 040802

    Google Scholar 

  14. Wilcox, D.C.: Turbulence modeling for CFD. DCW Industries, La Cañada, California, USA (1998)

    Google Scholar 

  15. Menter, F.R., Kunz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Proceedings 4th International Symposium on Turbulence, Heat and Mass Transfer, 12–17 October, Antalya, Turkey (2003)

    Google Scholar 

  16. Calomino, F., Alfonsi, G., Gaudio, R., D’Ippolito, A., Lauria, A., Tafarojnoruz, A., Artese, S.: Experimental and numerical study of free-surface flows in a corrugated pipe. Water 10 (2018). Art. 638

    Article  Google Scholar 

  17. D’Ippolito, A., Lauria, A., Alfonsi, G., Calomino, F.: Investigation of flow resistance exerted by rigid emergent vegetation in open channel. Acta Geophysica Online (2019). https://doi.org/10.1007/s11600-019-00280-8

    Article  Google Scholar 

  18. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VoF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  19. Alfonsi, G., Lauria, A., Primavera, L.: On evaluation of wave forces and runups on cylindrical obstacles. J. Flow Vis. Image Process. 20, 269–291 (2013)

    Article  Google Scholar 

  20. Alfonsi, G., Lauria, A., Primavera, L.: The field of flow structures generated by a wave of viscous fluid around vertical circular cylinder piercing the free surface. Procedia Eng. 116, 103–110 (2015)

    Article  Google Scholar 

  21. Alfonsi, G., Lauria, A., Primavera, L.: Recent results from analysis of flow structures and energy modes induced by viscous wave around a surface-piercing cylinder. Math. Probl. Eng. 2017 (2017). Art. 5875948

    Article  MathSciNet  Google Scholar 

  22. Issa, R.I.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  Google Scholar 

  23. Alfonsi, G., Lauria, A., Primavera, L.: A study of vortical structures past the lower portion of the Ahmed car model. J. Flow Vis. Image Process. 19(1), 81–95 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Lauria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lauria, A., Alfonsi, G. (2020). Numerical Simulation of Ski-Jump Hydraulic Behavior. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics