Skip to main content

Generalizing Pure and Impure Iterated Prisoner’s Dilemmas to the Case of Infinite and Infinitesimal Quantities

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

In this work, a generalization of both Pure and Impure iterated Prisoner’s Dilemmas is presented. More precisely, the generalization concerns the use of non-Archimedean quantities, i.e., payoffs that can be infinite, finite or infinitesimal and probabilities that can be finite or infinitesimal. This new approach allows to model situations that cannot be adequately addressed using iterated games with purely finite quantities. This novel class of models contains, as a special case, the classical known ones. This is an important feature of the proposed methodology, which assures that we are proposing a generalization of the already known games. The properties of the generalized models have also been validated numerically, by using a Matlab simulator of Sergeyev’s Infinity Computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benci, V., Horsten, L., Wenmackers, S.: Infinitesimal probabilities. Br. J. Philos. Sci. 69(2), 509–552 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Cococcioni, M., Cudazzo, A., Pappalardo, M., Sergeyev, Y.D.: Solving the lexicographic mixed-integer linear programming problem using Branch-and-Bound and Grossone methodology. Commun. Nonlinear Sci. Numer. Simul. 84, 105177 (2020). https://doi.org/10.1016/j.cnsns.2020.105177

    Article  MathSciNet  Google Scholar 

  3. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Towards lexicographic multi-objective linear programming using grossone methodology. In: Sergeyev, Y.D., Kvasov, D., Dell’Accio, F., Mukhametzhanov, M. (eds.) Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 090040. AIP Publishing, New York (2016)

    Google Scholar 

  4. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  5. Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in game theory using sergeyev’s infinity computing. Int. J. Unconv. Comput. 14(1), 1–25 (2018)

    Google Scholar 

  6. Fiaschi, L., Cococcioni, M.: Non-archimedean game theory: a numerical approach. Appl. Math. Comput. (submitted)

    Google Scholar 

  7. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  8. Gale, D., Stewart, F.M.: Infinite Games with Perfect Information, vol. 2. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  9. Hilbe, C., Traulsen, A., Sigmund, K.: Partners or rivals? Strategies for the iterated prisoner’s dilemma. Games Econ. Behav. 92(Suppl. C), 41–52 (2015)

    Article  MathSciNet  Google Scholar 

  10. Lai, L., Fiaschi, L., Cococcioni, M.: Solving mixed pareto-lexicographic multi-objective optimization problems: the case of priority chains (submitted)

    Google Scholar 

  11. Lambertini, L.: Prisoners’ dilemma in duopoly (super) games. J. Econ. Theory 77, 181–191 (1997)

    Article  MathSciNet  Google Scholar 

  12. Lambertini, L., Sasaki, D.: Optimal punishments in linear duopoly supergames with product differentiation. J. Econ. 69(2), 173–188 (1999)

    Article  Google Scholar 

  13. Rizza, D.: A study of mathematical determination through bertrand’s paradox. Philos. Math. 26(3), 375–395 (2017)

    Article  MathSciNet  Google Scholar 

  14. Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. LNM, vol. 274, pp. 97–136. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0073967

    Chapter  Google Scholar 

  15. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4, 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  16. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite. Found. Sci. 24, 153–170 (2019)

    Article  Google Scholar 

  17. Sergeyev, Y.D., Mukhametzhanov, M., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the infinity computer. Int. J. Unconv. Comput. 12(1), 3–23 (2016)

    Google Scholar 

  18. Steven, K.: Prisoner’s Dilemma. The Stanford Encyclopedia of Philosophy, Spring 2017. https://plato.stanford.edu/archives/spr2017/entries/prisoner-dilemma/

  19. Vickers, S.: Topology via Logic. Cambridge Tracts in Theoretical Computer Science, vol. 5. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  20. Zeng, W., Li, M., Chen, F., Nan, G.: Risk consideration and cooperation in the iterated prisoner’s dilemma. Soft. Comput. 20(2), 567–587 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

Work partially supported by the University of Pisa funded project PRA_2018_81 “Wearable sensor systems: personalized analysis and data security in healthcare”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cococcioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiaschi, L., Cococcioni, M. (2020). Generalizing Pure and Impure Iterated Prisoner’s Dilemmas to the Case of Infinite and Infinitesimal Quantities. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics