Skip to main content

Localization of Map Changes by Exploiting SLAM Residuals

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2020)

Abstract

Simultaneous Localization and Mapping is widespread in both robotics and autonomous driving. This paper proposes a novel method to identify changes in maps constructed by SLAM algorithms without feature-to-feature comparison. We use ICP-like algorithms to match frames and pose graph optimization to solve the SLAM problem. Finally, we analyze the residuals to localize possible alterations of the map. The concept was tested with 2D LIDAR SLAM problems in simulated and real-life cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vehicle Vision Research Laboratory of the Faculty of Transportation Engineering and Vehicle Engineering’s Department of Material Handling and Logistics Systems of Budapest University of Technology and Economics.

References

  1. Alcantarilla, P.F., Stent, S., Ros, G., Arroyo, R., Gherardi, R.: Street-viewchange detection with deconvolutional networks. Auton. Rob. 42(7), 1301–1322 (2018). https://doi.org/10.1007/s10514-018-9734-5

    Article  Google Scholar 

  2. Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001). https://doi.org/10.1109/70.938381

    Article  Google Scholar 

  3. Droeschel, D., Behnke, S.: Efficient continuous-time SLAM for 3D lidar-based online mapping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–9 (2018). https://doi.org/10.1109/icra.2018.8461000

  4. Durrant-Whyte, H., Roy, N., Abbeel, P.: A linear approximation for graph-based simultaneous localization and mapping. In: MITP (2012). https://doi.org/10.7551/mitpress/9481.003.0011

  5. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  6. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2, 31–43 (2010). https://doi.org/10.1109/mits.2010.939925

    Article  Google Scholar 

  7. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278, May 2016. https://doi.org/10.1109/ICRA.2016.7487258

  8. Khosoussi, K., Huang, S., Dissanayake, G.: Exploiting the separable structure of SLAM. In: Robotics: Science and Systems (2015). https://doi.org/10.15607/rss.2015.xi.023

  9. Lajoie, P.Y., Hu, S., Beltrame, G., Carlone, L.: Modeling perceptual aliasing in SLAM via discrete-continuous graphical models. IEEE Rob. Autom. Lett. PP, 1 (2019). https://doi.org/10.1109/LRA.2019.2894852

    Article  Google Scholar 

  10. Mendes, E., Koch, P., Lacroix, S.: ICP-based pose-graph SLAM. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 195–200, October 2016. https://doi.org/10.1109/SSRR.2016.7784298

  11. Mu, B., Liu, S.Y., Paull, L., Leonard, J.J., How, J.P.: SLAM with objects using a nonparametric pose graph. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4602–4609 (2016). https://doi.org/10.1109/iros.2016.7759677

  12. Mur-Artal, R., Tards, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  13. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 International Conference on Computer Vision, pp. 2320–2327, November 2011. https://doi.org/10.1109/ICCV.2011.6126513

  14. Oh, J.H., Jeon, J.D., Lee, B.H.: Place recognition for visual loop-closures using similarities of object graphs. Electron. Lett. 51(1), 44–46 (2015). https://doi.org/10.1049/el.2014.3996

    Article  Google Scholar 

  15. Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 137–144, June 2013. https://doi.org/10.1109/CVPR.2013.25

  16. Sakurada, K., Okatani, T.: Change detection from a street image pair using CNN features and superpixel segmentation. In: BMVC (2015). https://doi.org/10.5244/c.29.61

  17. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359, June 2013. https://doi.org/10.1109/CVPR.2013.178

  18. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual SLAM and structure from motion in dynamic environments: a survey. ACM Comput. Surv. 51(2), 37:1–37:36 (2018). https://doi.org/10.1145/3177853

    Article  Google Scholar 

  19. Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78, 138–156 (2000). https://doi.org/10.1006/cviu.1999.0832

    Article  Google Scholar 

  20. Ulusoy, A.O., Mundy, J.L.: Image-Based 4-d reconstruction using 3-d change detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 31–45. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_3

    Chapter  Google Scholar 

  21. Underwood, J.P., Gillsj, D., Bailey, T., Vlaskine, V.: Explicit 3D change detection using ray-tracing in spherical coordinates. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4735–4741, May 2013. https://doi.org/10.1109/ICRA.2013.6631251

  22. Wang, H., Huang, S., Frese, U., Dissanayake, G.: The nonlinearity structure of point feature SLAM problems with spherical covariance matrices. Automatica 49(10), 3112–3119 (2013). https://doi.org/10.1016/j.automatica.2013.07.025

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, H., Huang, S., Khosoussi, K., Frese, U., Dissanayake, G., Liu, B.: Dimensionality reduction for point feature slam problems with spherical covariance matrices. Automatica 51, 149–157 (2015). https://doi.org/10.1016/j.automatica.2014.10.114

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiao, W., Vallet, B., Schindler, K., Paparoditis, N.: Street-side vehicle detection, classification and change detection using mobile laser scanning data. ISPRS J. Photogrammetry Remote Sens. 114, 166–178 (2016). https://doi.org/10.1016/j.isprsjprs.2016.02.007

    Article  Google Scholar 

  25. Yu, C., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174 (2018). https://doi.org/10.1109/iros.2018.8593691

Download references

Acknowledgment

The publication was supported by the European Commission through the Centre of Excellence in Production Informatics and Control (EPIC), grant No. 739592. The research was further supported by the Hungarian Scientific Research Fund No. OTKA/NKFIH K\(\_\)120499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Rozsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozsa, Z., Golarits, M., Sziranyi, T. (2020). Localization of Map Changes by Exploiting SLAM Residuals. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40605-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40604-2

  • Online ISBN: 978-3-030-40605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics