Skip to main content

Microstructural Statistics Informed Boundary Conditions for Statistically Equivalent Representative Volume Elements (SERVEs) of Polydispersed Elastic Composites

  • Chapter
  • First Online:
Integrated Computational Materials Engineering (ICME)

Abstract

The statistically equivalent RVE or P-SERVE have been introduced in Swaminathan et al. (J Compos Mater 40(7):583–604, 2006) and Ghosh (Micromechanical analysis and multi-scale modeling using the voronoi cell finite element method. CRC Press/Taylor & Francis, Boca Raton, 2011) as the smallest microstructural volume element in non-uniform microstructures that has effective material properties equivalent to those of the entire microstructure. An important consideration is the application of appropriate boundary conditions for optimal SERVE domains. The exterior statistics-based boundary conditions or ESBCs have been developed in Ghosh and Kubair (J Mech Phys Solids 96:1–24, 2016), Kubair and Ghosh (Int J Solids Struct 112:106–121, 2017), Kubair et al. (J Comput Mech 52(21):2919–2928, 2018), accounting for the statistics of fiber distributions and interactions in the domain exterior to the SERVE. The ESBC-based SERVEs have been validated for effective convergence in evaluating homogenized stiffnesses and optimal domains for micromechanical analysis. Validation is also conducted with an experimentally studied carbon-fiber epoxy-matrix polymer matrix composite (PMC). The performance of the SERVE with ESBCs is compared with other boundary conditions, as well as with the statistical volume elements (SVE). The tests clearly show the significant advantages of the ESBCs in terms of accuracy of the homogenized stiffness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  Google Scholar 

  2. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  Google Scholar 

  3. M. Stroeven, H. Askes, L.J. Sluys, Numerical determination of representative volumes for granular materials. Comput. Methods Appl. Mech. Eng. 193(30–32), 3221–3238 (2004)

    Article  Google Scholar 

  4. M. Thomas, N. Boyard, L. Perez, Y. Jarny, D. Delaunay, Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction. Compos. Sci. Technol. 68(15–16), 3184–3192 (2008)

    Article  CAS  Google Scholar 

  5. C. Heinrich, M. Aldridge, A.S. Wineman, J. Kieffer, A.M. Waas, K. Shahwan, The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites. Model. Simul. Mater. Sci. Eng. 20(7), 075007 (2012)

    Google Scholar 

  6. R. Hill, The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95 (1967)

    Article  CAS  Google Scholar 

  7. H.J. Böhm, A short introduction to continuum micromechanics, in Mechanics of Microstructured Materials: CISM Courses and Lectures, ed. by H.J. Böhm, vol. 464 (Springer, Wien, 2004), pp. 1–40

    Google Scholar 

  8. P.W. Chung, K.K. Tamma, R.R. Namburu, A finite element thermo-viscoelastic creep for heterogeneous structures with dissipative correctors. Finite Elem. Anal. Des. 36, 279–313 (2000)

    Article  Google Scholar 

  9. S. Ghosh, Micromechanical Analysis and Multi-scale Modeling Using the Voronoi Cell Finite Element Method (CRC Press/Taylor & Francis, Boca Raton, 2011)

    Book  Google Scholar 

  10. N. Willoughby, W.J. Parnell, A.L. Hazel, I.D. Abrahams, Homogenization methods to approximate the effective response of random fibre-reinforced composites. Int. J. Solids Struct. 49(13), 1421–1433 (2012)

    Article  CAS  Google Scholar 

  11. J. Fish, K. Shek, Multiscale analysis of composite materials and structures. Compos. Sci. Technol. 60, 2547–2556 (2000)

    Article  Google Scholar 

  12. S. Ghosh, K. Lee, S. Moorthy, Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. Int. J. Solids Struct. 32(1), 27–62 (1995)

    Article  Google Scholar 

  13. S. Ghosh, K. Lee, S. Moorthy, Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132(1–2), 63–116 (1996)

    Article  Google Scholar 

  14. J.M. Guedes, N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 83, 143–198 (1991)

    Article  Google Scholar 

  15. V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002)

    Article  Google Scholar 

  16. K. Terada, N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37, 2285–2311 (2000)

    Article  Google Scholar 

  17. F. Feyel, J.H. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)

    Article  Google Scholar 

  18. S. Swaminathan, S. Ghosh, N.J. Pagano, Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J. Compos. Mater. 40(7), 583–604 (2006)

    Article  CAS  Google Scholar 

  19. S. Swaminathan, N.J. Pagano, S. Ghosh, Statistically equivalent representative volume elements for unidirectional composite microstructures: part II-with interfacial debonding. J. Compos. Mater. 40(7), 605–621 (2006)

    Article  CAS  Google Scholar 

  20. M. Pinz, G. Weber, W. Lenthe, M. Uchic, T.M. Pollock, S. Ghosh, Microstructure and property based statistically equivalent RVEs for intragranular γ −γ′ microstructures of Ni-based superalloys. Acta Mater. 157(15), 245–258 (2018)

    Article  CAS  Google Scholar 

  21. A. Bagri, G. Weber, J.-C. Stinville, W. Lenthe, T. Pollock, C. Woodward, S. Ghosh, Microstructure and property-based statistically equivalent representative volume elements for polycrystalline Ni-based superalloys containing annealing twins. Metall. Mater. Trans. A 49(11), 5727–5744 (2018)

    Article  CAS  Google Scholar 

  22. X. Tu, A. Shahba, J. Shen, S. Ghosh, Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int. J. Plast. 115, 268–292 (2019)

    Article  CAS  Google Scholar 

  23. T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  Google Scholar 

  24. P. Trovalusci, M. Ostoja-Starsewski, M.L. De Bellis, A. Murrali, Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)

    Article  Google Scholar 

  25. E. Recciaa, M.L. De Bellis, P. Trovalusci, R. Masiani, Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos. Part B 136, 39–45 (2018)

    Article  CAS  Google Scholar 

  26. R. Pyrz, Correlation of microstructure variability and local stress-field in 2-phase materials. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 177(1–2), 253–259 (1994)

    Article  Google Scholar 

  27. S. Torquato, Effective stiffness tensor of composite media-I. exact series expansions. J. Mech. Phys. Solids 45(9), 1421–1448 (1997)

    Google Scholar 

  28. S.E. Wilding, D.T. Fullwood, Clustering metrics for two-phase composites. Comput. Mater. Sci. 50(7), 2262–2272 (2011)

    Article  Google Scholar 

  29. E.-Y. Guo, N. Chawla, T. Jing, S. Torquato, Y. Jiao, Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mater. Charact. 89, 33–42 (2014)

    Article  CAS  Google Scholar 

  30. Y. Jiao, F.H. Stillinger, S. Torquato, Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. E 76, 031110 (2007)

    Article  CAS  Google Scholar 

  31. Y. Jiao, F.H. Stillinger, S. Torquato, A superior descriptor of random textures and its predictive capacity. Proc. Nat. Acad. Sci. USA 106(42), 17634–17639 (2007)

    Article  Google Scholar 

  32. A Tewari, A.M Gokhale, J.E Spowart, D.B Miracle, Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Mater. 52(2), 307–319 (2004)

    Google Scholar 

  33. D.T. Fullwood, S.R. Niezgoda, S.R. Kalidindi, Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56, 942–948 (2008)

    Article  CAS  Google Scholar 

  34. S.R. Niezgoda, D.T. Fullwood, S.R. Kalidindi, Delineation of the space of 2-point correlations in a composite material system. Acta Mater. 56(18), 5285–5292 (2008)

    Article  CAS  Google Scholar 

  35. D.V. Kubair, S. Ghosh, Exterior statistics based boundary conditions for establishing statistically equivalent representative volume elements of statistically nonhomogeneous elastic microstructures. Int. J. Solids Struct. 112, 106–121 (2017)

    Article  Google Scholar 

  36. T.I. Zohdi, P. Wriggers, An introduction to Computational Micromechanics (Springer-Verlag Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-540-32360-0

    Google Scholar 

  37. M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Chapman and Hall/CRC, Boca Raton, 2007)

    Book  Google Scholar 

  38. S. Ghosh, D.V. Kubair, Exterior statistics based boundary conditions for representative volume elements of elastic composites. J. Mech. Phys. Solids 96, 1–24 (2016)

    Article  Google Scholar 

  39. D. V. Kubair, M. Pinz, K. Kollins, C. Przybyla, S. Ghosh, Role of exterior statistics-based boundary conditions for property-based statistically equivalent RVEs of polydispersed elastic composites. J. Comput. Mech. 52(21), 2919–2928 (2018)

    Google Scholar 

  40. S. Torquato, Random Heterogeneous Materials; Microstructure and Macroscopic Properties (Springer, New York, 2002)

    Book  Google Scholar 

  41. T. Mura, Micromechanics of Defects in Solids, 2nd edn. (Kluwer Academic Publishers and Martinus Nijhoff, Dordrecht, 1987)

    Book  Google Scholar 

  42. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)

    Google Scholar 

  43. W. Lenthe, C. Pollock, Microstructural characterization of unidirectional composites. Private Communications (2014)

    Google Scholar 

  44. X. Yin, A. To, C. McVeigh, W.K. Liu, Statistical volume element method for predicting microstructure–constitutive property relations. Comput. Methods Appl. Mech. Eng. 197, 3516–3529 (2008)

    Article  Google Scholar 

  45. D.L. McDowell, S. Ghosh, S.R. Kalidindi, Representation and computational structure-property relations of random media. JOM, TMS 63(3), 45–51 (2011)

    Article  Google Scholar 

  46. S.W. Clay, P.M. Knoth, Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods. J. Compos. Mater. 10, 1333–1353 (2016)

    Google Scholar 

  47. HEXCEL, Composite materials and structures (2017)

    Google Scholar 

  48. C. Montgomery, N. Sottos, Experiments for properties of composites. Unpublished work. Private communication (2017)

    Google Scholar 

Download references

Acknowledgements

This work has been supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University awarded by the AFOSR/RSL Computational Mathematics Program (Manager Dr. A. Sayir) and AFRL/RX (Monitors Drs. C. Woodward and C. Przybyla). These sponsorships are gratefully acknowledged. Computing support by the Homewood High-Performance Compute Cluster (HHPC) and Maryland Advanced Research Computing Center (MARCC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Appendix: Eshelby Tensors for Circular Cylindrical Fibers

Appendix: Eshelby Tensors for Circular Cylindrical Fibers

For a cylindrical fiber of circular cross-section with a radius a and centroid at x I, let r = x −x I, x being a generic field point. Let \(\rho = \frac {a}{r}\) with \({r}=\lvert \mathbf {x}-{\mathbf {x}}^I\rvert \) and \(\theta =\angle (\mathbf {x} - {\mathbf {x}}^{I})\). Then the interior and exterior Eshelby tensors S ijkl and \(\hat {G}_{ijkl}\left (\mathbf {x},{\mathbf {x}}^I \right )\) have been given in [41] as:

$$\displaystyle \begin{aligned} S_{ijkl} = \{ \alpha \}^T \{\Theta_{ijkl} \}(\theta) ~~~\mbox{and}~~~{\hat{G}}_{ijkl}\left(\mathbf{x},{\mathbf{x}}^I \right)= \{\beta \}^T ({r}) \{ \Theta_{ijkl} \}(\theta) {} \end{aligned} $$
(32)

The material-dependent vectors {α} and {β} are:

$$\displaystyle \begin{aligned} \{ \alpha \} =\frac{1}{8 \left( 1-\nu^{M} \right)} \left\{\begin{array}{c} 4 \nu^{M} -1\\ 3-4 \nu^{M}\\ 0\\ 0\\ 0 \end{array}\right\}, ~~\{\beta \}({r})= \frac{\rho^{2}}{8\left(1-\nu^{M}\right)} \left\{\begin{array}{c} -2\left( 1+2 \nu^{M} \right) + 9\rho^2\\ 2- 3 \rho^2\\ 4 ( 1+2\nu^{M} ) -12 \rho^2\\ 4 -12 \rho^2\\ 16-24\rho^2 \end{array}\right\} \end{aligned}$$

The parameter ν M is the Poisson’s ratio of the matrix material. The circumference basis tensor is given as:

$$\displaystyle \begin{aligned} \{\Theta_{ijkl} \}(\theta)= \left\{\begin{array}{c} \delta_{ij} \delta_{kl}\\ \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}\\ \delta_{ij} n_{k} n_{l}\\ n_{i} n_{j} \delta_{kl}\\ n_{i} n_{j} n_{k} n_{l} \end{array}\right\}, ~~\mbox{where} \left\{\begin{array}{c} n_{1}\\ n_{2}\\ n_{3} \end{array}\right\}= \left\{\begin{array}{c} \cos \theta\\ \sin \theta\\ 1 \end{array}\right\} \end{aligned}$$

For the cylindrical fiber of circular cross-section, the interior and exterior displacement-transfer tensors are given by:

$$\displaystyle \begin{aligned} T_{ijk} \left(\mathbf{x},{\mathbf{x}}^I \right)= \{ \eta \}^T(r) \{\Psi_{ijk} \}(\theta) ~~~\mbox{and}~~~D_{ijk} \left(\mathbf{x},{\mathbf{x}}^I \right)= \{\gamma \}^T (r) \{ \Psi_{ijk} \}(\theta) {} \end{aligned} $$
(33)

where

$$\displaystyle \begin{aligned} \{ \eta \}(r) =a \frac{\rho}{8 \left( 1 -\nu^{M} \right)} \left\{\begin{array}{c} 4 \nu^{M} -1\\ 3 - 4 \nu^{M}\\ 0 \end{array}\right\}, ~~\{\gamma \}(r)= a \frac{\rho}{8 \left( 1 -\nu^{M} \right)} \left\{\begin{array}{c} -2 \left(1-2 \nu^{M} \right) + \rho^2\\ 2 \left(1-2 \nu^{M} \right) + \rho^2\\ 4 \left(1 - \rho^2\right) \end{array}\right\} \end{aligned}$$

and

$$\displaystyle \begin{aligned} \{\Psi_{ijk} \}(\theta)= \left\{\begin{array}{c} n_{i} \delta_{jk}\\ n_{j} \delta_{ik} + n_{k} \delta_{ij}\\ n_{i} n_{j} n_{k} \end{array}\right\} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Kubair, D.V., Przybyla, C. (2020). Microstructural Statistics Informed Boundary Conditions for Statistically Equivalent Representative Volume Elements (SERVEs) of Polydispersed Elastic Composites. In: Ghosh, S., Woodward, C., Przybyla, C. (eds) Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-030-40562-5_11

Download citation

Publish with us

Policies and ethics