Skip to main content

Multiscale Modeling of Epoxies and Epoxy-Based Composites

  • Chapter
  • First Online:
Integrated Computational Materials Engineering (ICME)

Abstract

Epoxies play an important role in determining the performance of epoxy-based composites, coatings, and adhesives. Multiscale modeling methods emerge as a complementary tool to conventional experimental and theoretical approaches and are widely used to study the relationships between processing, structure, and property of polymer materials. This paper aims to provide a review of multiscale modeling efforts on epoxy and epoxy-based materials with a main focus on DGEBA and DGEBF systems. Material’s structural, thermal, mechanical, and interfacial properties are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Dickie, S.S. Labana, R.S. Bauer (eds.), Cross-Linked Polymers: Chemistry, Properties, and Applications (American Chemical Society, Washington DC 1988)

    Google Scholar 

  2. C. May, Epoxy Resins: Chemistry and Technology (CRC Press, New York 1988)

    Google Scholar 

  3. F.-L. Jin, X. Li, S.-J. Park, Synthesis and application of epoxy resins: a review. J. Indus. Eng. Chem. 29, 1–11 (2015)

    Article  CAS  Google Scholar 

  4. K. Dušek, Network formation in curing of epoxy resins, in Epoxy Resins and Composites III (Springer, 1986), pp. 1–59

    Google Scholar 

  5. O. Becker, Y.-B. Cheng, R.J. Varley, G.P. Simon, Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36(5), 1616–1625 (2003)

    Article  CAS  Google Scholar 

  6. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites’a review. Mater. Sci. Eng. A 393(1–2), 1–11 (2005)

    Article  CAS  Google Scholar 

  7. J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein, M.J. Buehler, Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15), 3321–3343 (2010)

    Article  CAS  Google Scholar 

  8. K.W. Putz, M.J. Palmeri, R.B. Cohn, R. Andrews, L.C. Brinson, Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 41(18), 6752–6756 (2008)

    Article  CAS  Google Scholar 

  9. A.A. Azeez, K.Y. Rhee, S.J. Park, D. Hui, Epoxy clay nanocomposites–processing, properties and applications: a review. Compos. Part B Eng. 45(1), 308–320 (2013)

    Article  CAS  Google Scholar 

  10. T.A. Nguyen, T.H. Nguyen, T.V. Nguyen, H. Thai, X. Shi, Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. J. Nanosci. Nanotechnol. 16, 9874–9881 (2016)

    Article  CAS  Google Scholar 

  11. J. Arbaoui, H. Moustabchir, J.R. Vigué, F.-X. Royer, The effects of various nanoparticles on the thermal and mechanical properties of an epoxy resin. Mater. Res. Innov. 20, 145–150 (2016)

    Article  CAS  Google Scholar 

  12. J.B. Enns, J.K. Gillham, Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy. J. Appl. Polym. Sci. 28(9), 2831–2846 (1983)

    Article  CAS  Google Scholar 

  13. M. Cizmecioglu, A. Gupta, R.F. Fedors, Influence of cure conditions on glass transition temperature and density of an epoxy resin. J. Appl. Polym. Sci. 32(8), 6177–6190 (1986)

    Article  CAS  Google Scholar 

  14. E.D. Crawford, A.J. Lesser, Brittle to ductile: fracture toughness mapping on controlled epoxy networks. Polym. Eng. Sci. 39(2), 385–392 (1999)

    Article  CAS  Google Scholar 

  15. C. Czaderski, E. Martinelli, J. Michels, M. Motavalli, Effect of curing conditions on strength development in an epoxy resin for structural strengthening. Compos. Part B Eng. 43(2), 398–410 (2012)

    Article  CAS  Google Scholar 

  16. C. Li, G.A. Medvedev, E.-W. Lee, J. Kim, J.M. Caruthers, A. Strachan, Molecular dynamics simulations and experimental studies of the thermomechanical response of an epoxy thermoset polymer. Polymer 53(19), 4222–4230 (2012)

    Article  CAS  Google Scholar 

  17. Q. Deng, Y.C. Jean, Free-volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence. Macromolecules 26, 30–34 (1988)

    Article  Google Scholar 

  18. S.J. Wang, C.L. Wang, B. Wang, Microstructure and mechanical properties of polymers studied by positron annihilation. J. Radioanal. Nucl. Chem. 210, 407–421 (1996)

    Article  CAS  Google Scholar 

  19. T. Yang, Mechanical and swelling properties of hydrogels. Ph.D. thesis, Royal Institute of Technology in Stockholm (2012)

    Google Scholar 

  20. C.L. Sherman, R.C. Zeigler, N.E. Verghese, M.J. Marks, Structure–property relationships of controlled epoxy networks with quantified levels of excess epoxy etherification. Polymer 49(5), 1164–1172 (2008)

    Article  CAS  Google Scholar 

  21. S. Morsch, Y. Liu, S.B. Lyon, S.R. Gibbon, Insights into epoxy network nanostructural heterogeneity using afm-ir. ACS Appl. Mater. Interfaces 8(1), 959–966 (2015)

    Article  CAS  Google Scholar 

  22. B. Kim, J. Choi, S. Yang, S. Yu, M. Cho, Multiscale modeling of interphase in crosslinked epoxy nanocomposites. Compos. Part B 120, 128–142 (2017)

    Article  CAS  Google Scholar 

  23. M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Physical interactions at carbon nanotube-polymer interface. Polymer 44(25), 7757–7764 (2003)

    Article  CAS  Google Scholar 

  24. H.B. Fan, M.M.F. Yuen, Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48(7), 2174–2178 (2007)

    Article  CAS  Google Scholar 

  25. C.F. Wu, W.J. Xu, Atomistic molecular modelling of crosslinked epoxy resin. Polymer 48, 6004 (2006)

    Article  CAS  Google Scholar 

  26. S. Yang, Z. Cui, J. Qu, A coarse-grained model for epoxy molding compound. J. Phys. Chem. B 118, 1660–1669 (2014)

    Article  CAS  Google Scholar 

  27. A. Aramoon, T.D. Breitzman, C. Woodward, J.A. El-Awady, Coarse-grained molecular dynamics study of the curing and properties of highly cross-linked epoxy polymers. J. Phys. Chem. B 120(35), 9495–9505 (2016)

    Article  CAS  Google Scholar 

  28. G.M. Odegard, B.D. Jensen, S. Gowtham, J. Wu, J. He, Z. Zhang, Predicting mechanical response of crosslinked epoxy using reaxff. Chem. Phys. Lett. 591, 175–178 (2014)

    Article  CAS  Google Scholar 

  29. A. Vashisth, C. Ashraf, C.E. Bakis, A.C.T. van Duin, Effect of chemical structure on thermo-mechanical properties of epoxy polymers: comparison of accelerated reaxff simulations and experiments. Polymer 158, 354–363 (2018)

    Article  CAS  Google Scholar 

  30. M. Panico, S. Narayanan, L.C. Brinson, Simulations of tensile failure in glassy polymers: effect of cross-link density. Model. Simul. Mater. Sci. Eng. 18(5), 055005 (2010)

    Google Scholar 

  31. C. Li, A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer epon862/detda. Polymer 52(13), 2920–2928 (2011)

    Article  CAS  Google Scholar 

  32. K. Friedrich, T. Goda, K. Varadi, B. Wetzel, Finite element simulation of the fiber–matrix debonding in polymer composites produced by a sliding indentor: Part I – normally oriented fibers. J. Compos. Mater. 38(18), 1583–1606 (2004)

    Article  CAS  Google Scholar 

  33. A.R. Maligno, N.A. Warrior, A.C. Long, Finite element investigations on the microstructure of fibre-reinforced composites. Express Polym. Lett. 2(9), 665–676 (2008)

    Article  CAS  Google Scholar 

  34. D. Esqué-de los Ojos, R. Ghisleni, A. Battisti, G. Mohanty, J. Michler, J. Sort, A.J. Brunner, Understanding the mechanical behavior of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone model. Comput. Mater. Sci. 117, 330–337 (2016)

    Google Scholar 

  35. M.M. Moure, S.K. Garcí-a-Castillo, S. Sánchez-Sáez, E. Barbero, E.J. Barbero, Matrix cracking evolution in open-hole laminates subjected to thermo-mechanical loads. Compos. Struct. 183, 510–520 (2018)

    Article  Google Scholar 

  36. G. Allegra, G. Raos, M. Vacatello, Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 33(7), 683–731 (2008)

    Article  CAS  Google Scholar 

  37. A. Karatrantos, N. Clarke, M. Kröger, Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: a review. Polym. Rev. 56(3), 385–428 (2016)

    Article  CAS  Google Scholar 

  38. Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33(2), 191–269 (2008)

    Article  CAS  Google Scholar 

  39. I. Yarovsky, E. Evans, Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3), 963–969 (2002)

    Article  CAS  Google Scholar 

  40. C. Wu, W. Xu, Atomistic molecular modelling of crosslinked epoxy resin. Polymer 47(16), 6004–6009 (2006)

    Article  CAS  Google Scholar 

  41. J.L. Tack, D.M. Ford, Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics. J. Mol. Graph. Model. 26(8), 1269–1275 (2008)

    Article  CAS  Google Scholar 

  42. A. Shokuhfar, B. Arab, The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J. Mol. Model. 19(9), 3719–3731 (2013)

    Article  CAS  Google Scholar 

  43. L. Gao, Q. Zhang, H. Li, S. Yu, W. Zhong, G. Sui, X. Yang, Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems: a methodology combining atomistic molecular simulation with experimental analyses. Polym. Chem. 8(13), 2016–2027 (2017)

    Article  CAS  Google Scholar 

  44. Y. Fu, J.G. Michopoulos, J.-H. Song, On investigating the thermomechanical properties of cross-linked epoxy via molecular dynamics analysis. Nanoscale Microscale Thermophys. Eng. 21(1), 8–25 (2017)

    Article  CAS  Google Scholar 

  45. J.C. Moller, S.A. Barr, E.J. Schultz, T.D. Breitzman, R.J. Berry, Simulation of fracture nucleation in cross-linked polymer networks. JOM 65(2), 147–167 (2013)

    Article  CAS  Google Scholar 

  46. J.C. Moller, G.S. Kedziora, S.A. Barr, T.D. Breitzman, R.J. Berry, Atomistic prediction of plane stress behavior of glassy thermosets. Comput. Mater. Sci. 128, 257–277 (2017)

    Article  CAS  Google Scholar 

  47. Z. Meng, M.A. Bessa, W. Xia, W. Kam Liu, S. Keten, Predicting the macroscopic fracture energy of epoxy resins from atomistic molecular simulations. Macromolecules 49(24), 9474–9483 (2016)

    Article  CAS  Google Scholar 

  48. T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, K. Yoshioka, Molecular dynamics simulation of crosslinked epoxy resins: curing and mechanical properties. Eur. Polym. J. 80, 78–88 (2016)

    Article  CAS  Google Scholar 

  49. A. Bandyopadhyay, P.K. Valavala, T.C. Clancy, K.E. Wise, G.M. Odegard, Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11), 2445–2452 (2011)

    Article  CAS  Google Scholar 

  50. B. Koo, N. Subramanian, A. Chattopadhyay, Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Compos. Part B Eng. 95, 433–439 (2016)

    Article  CAS  Google Scholar 

  51. V. Varshney, S.S. Patnaik, A.K. Roy, B.L. Farmer, A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41(18), 6837–6842 (2008)

    Article  CAS  Google Scholar 

  52. M. Langeloth, T. Sugii, M.C. Böhm, F. Müller-Plathe, The glass transition in cured epoxy thermosets: a comparative molecular dynamics study in coarse-grained and atomistic resolution. J. Chem. Phys. 143(24), 243158 (2015)

    Google Scholar 

  53. N. Subramanian, B. Koo, A. Rai, A. Chattopadhyay, Molecular dynamics-based multiscale damage initiation model for cnt/epoxy nanopolymers. J. Mater. Sci. 53(4), 2604–2617 (2018)

    Article  CAS  Google Scholar 

  54. Z. Wang, Q. Lv, S. Chen, C. Li, S. Sun, S. Hu, Effect of interfacial bonding on interphase properties in sio2/epoxy nanocomposite: a molecular dynamics simulation study. ACS Appl. Mater. Interfaces 8(11), 7499–7508 (2016)

    Article  CAS  Google Scholar 

  55. B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60, 356–365 (2013)

    Article  CAS  Google Scholar 

  56. B. Kim, J. Choi, H. Shin, M. Cho, Multiscale study on load transfer of epoxy nanocomposites, in 21st International Conference on Composite Materials (2017)

    Google Scholar 

  57. S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3), 945–952 (2009)

    Article  CAS  Google Scholar 

  58. S. Yang, F. Gao, J. Qu, A molecular dynamics study of tensile strength between a highly-crosslinked epoxy molding compound and a copper substrate. Polymer 54(18), 5064–5074 (2013)

    Article  CAS  Google Scholar 

  59. G. Bahlakeh, B. Ramezanzadeh, A detailed molecular dynamics simulation and experimental investigation on the interfacial bonding mechanism of an epoxy adhesive on carbon steel sheets decorated with a novel cerium–lanthanum nanofilm. ACS Appl. Mater. Interfaces 9(20), 17536–17551 (2017)

    Article  CAS  Google Scholar 

  60. M. Tsige, M.J. Stevens, Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules 37(2), 630–637 (2004)

    Article  CAS  Google Scholar 

  61. O. Büyüköztürk, M.J. Buehler, D. Lau, C. Tuakta, Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. Int. J. Solids Struct. 48(14–15), 2131–2140 (2011)

    Article  CAS  Google Scholar 

  62. M.J. Stevens, Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8), 2710–2718 (2001)

    Article  CAS  Google Scholar 

  63. Y. Li, B. Abberton, M. Kröger, W. Liu, Challenges in multiscale modeling of polymer dynamics. Polymers 5(2), 751–832 (2013)

    Article  CAS  Google Scholar 

  64. A. Aramoon, T.D. Breitzman, C. Woodward, J.A. El-Awady, Correlating free-volume hole distribution to the glass transition temperature of epoxy polymers. J. Phys. Chem. B 121(35), 8399–8407 (2017)

    Article  CAS  Google Scholar 

  65. K.S. Khare, R. Khare, Directed diffusion approach for preparing atomistic models of crosslinked epoxy for use in molecular simulations. Macromol. Theory Simul. 21(5), 322–327 (2012)

    Article  CAS  Google Scholar 

  66. S. Yang, J. Qu, Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer. Phys. Rev. E 90(1), 012601 (2014)

    Google Scholar 

  67. S. Yang, Z. Cui, J. Qu, A coarse-grained model for epoxy molding compound. J. Phys. Chem. B 118(6), 1660–1669 (2014)

    Article  CAS  Google Scholar 

  68. Y. Fu, J. Michopoulos, J.-H. Song, Coarse-grained molecular dynamics simulations of epoxy resin during the curing process. Comput. Mater. Sci. 107, 24–32 (2015)

    Article  CAS  Google Scholar 

  69. S. Yang, J. Qu, An investigation of the tensile deformation and failure of an epoxy/cu interface using coarse-grained molecular dynamics simulations. Model. Simul. Mater. Sci. Eng. 22(6), 065011 (2014)

    Google Scholar 

  70. A.V.S.S. Prasad, T. Grover, S. Basu, Coarse–grained molecular dynamics simulation of cross–linking of dgeba epoxy resin and estimation of the adhesive strength. Int. J. Eng. Sci. Technol. 2(4), 17–30 (2010)

    Article  Google Scholar 

  71. A.J.M. Jasso, J.E. Goodsell, A.J. Ritchey, R.B. Pipes, M. Koslowski, A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen. Compos. Sci. Technol. 71(16), 1819–1825 (2011)

    Article  CAS  Google Scholar 

  72. H.W. Wang, H.W. Zhou, R.D. Peng, L. Mishnaevsky Jr, Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos. Sci. Technol. 71(7), 980–988 (2011)

    Article  CAS  Google Scholar 

  73. J. Bienias, H. Debski, B. Surowska, T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM. Comput. Mater. Sci. 64, 168–172 (2012)

    Article  CAS  Google Scholar 

  74. B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69, 100–106 (2013)

    Article  CAS  Google Scholar 

  75. Dassault Systemes (2016) Abaqus. Retrieve from http://www.3ds.com/products-services/simulia/products/abaqus/

    Google Scholar 

  76. P.P. Camanho, C.G. Dávila, Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737 (2002)

    Google Scholar 

  77. S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, P.D. Zavattieri, Use of mode-i cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite. Compos. Sci. Technol. 65(2), 281–293 (2005)

    Article  CAS  Google Scholar 

  78. G. Giuliese, R. Palazzetti, F. Moroni, A. Zucchelli, A. Pirondi, Cohesive zone modelling of delamination response of a composite laminate with interleaved nylon 6,6 nanofibres. Compos. Part B Eng. 78, 384–392 (2015)

    Article  CAS  Google Scholar 

  79. J. Fish, Q. Yu, K. Shek, Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 45(11), 1657–1679 (1999)

    Article  Google Scholar 

  80. G.Z. Voyiadjis, P.I. Kattan, Z.N. Taqieddin, Continuum approach to damage mechanics of composite materials with fabric tensors. Int. J. Damage Mech. 16(3), 301–329 (2007)

    Article  Google Scholar 

  81. J. Choi, H. Shin, M. Cho, A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite. Polymer 89, 159–171 (2016)

    Article  CAS  Google Scholar 

  82. J. Choi, H. Shin, S. Yang, M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Compos. Struct. 119, 365–376 (2015)

    Article  Google Scholar 

  83. C. Li, A. Strachan, Molecular scale simulations on thermoset polymers: a review. J. Polym. Sci. B Polym. Phys. 53(2), 103–122 (2015)

    Article  CAS  Google Scholar 

  84. P.V. Komarov, C. Yu-Tsung, C. Shih-Ming, P.G. Khalatur, P. Reineker, Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules 40(22), 8104–8113 (2007)

    Article  CAS  Google Scholar 

  85. D.R. Heine, G.S. Grest, C.D. Lorenz, M. Tsige, M.J. Stevens, Atomistic simulations of end-linked poly (dimethylsiloxane) networks: structure and relaxation. Macromolecules 37(10), 3857–3864 (2004)

    Article  CAS  Google Scholar 

  86. F.G. Garcia, B.G. Soares, V.J.R.R. Pita, R. Sánchez, J. Rieumont, Mechanical properties of epoxy networks based on dgeba and aliphatic amines. J. Appl. Polym. Sci. 106(3), 2047–2055 (2007)

    Article  CAS  Google Scholar 

  87. J.L. Tack, Thermodynamic and mechanical properties of EPON 862 with curing agent detda by molecular simulation. Technical report, Texas A and M University College Station, Department of Chemical Engineering (2006)

    Google Scholar 

  88. L. Sun, G.L. Warren, J.Y. O’reilly, W.N. Everett, S.M. Lee, D. Davis, D. Lagoudas, H.-J. Sue, Mechanical properties of surface-functionalized swcnt/epoxy composites. Carbon 46(2), 320–328 (2008)

    Article  CAS  Google Scholar 

  89. Y. Zhou, F. Pervin, L. Lewis, S. Jeelani, Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 452, 657–664 (2007)

    Article  CAS  Google Scholar 

  90. N.B. Shenogina, M. Tsige, S.S. Patnaik, S.M. Mukhopadhyay, Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45(12), 5307–5315 (2012)

    Article  CAS  Google Scholar 

  91. B. Burton, D. Alexander, H. Klein, A. Garibay-Vasquez, A. Pekarik, C. Henkee, Epoxy formulations using jeffamine polyetheramines (2005)

    Google Scholar 

  92. H.J. Zhang, S. Sellaiyan, T. Kakizaki, A. Uedono, Y. Taniguchi, K. Hayashi, Effect of free-volume holes on dynamic mechanical properties of epoxy resins for carbon-fiber-reinforced polymers. Macromolecules 50(10), 3933–3942 (2017)

    Article  CAS  Google Scholar 

  93. G. Dlubek, E.M. Hassan, R. Krause-Rehberg, J. Pionteck, Free volume of an epoxy resin and its relation to structural relaxation: evidence from positron lifetime and pressure-volume-temperature experiments. Phys. Rev. E 73(3), 031803 (2006)

    Google Scholar 

  94. A. Aramoon, A multiscale ccomputational framework to predict deformation and failure in polymer matrix composites. Ph.D thesis, Johns Hopkins University (2016)

    Google Scholar 

  95. Q. Deng, Y.C. Jean, Free-volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence. Macromolecules 26(1), 30–34 (1993)

    Article  CAS  Google Scholar 

  96. Y.C. Jean, Q. Deng, Direct measurement of free-volume hole distributions in polymers by using a positronium probe. J. Polym. Sci. B Polym. Phys. 30(12), 1359–1364 (1992)

    Article  CAS  Google Scholar 

  97. S. Tamrakar, R. Ganesh, S. Sockalingam, B.Z. Haque, J.W. Gillespie, Experimental investigation of strain rate and temperature dependent response of an epoxy resin undergoing large deformation. J. Dyn. Behav. Mater. 4(1), 114–128 (2018)

    Article  Google Scholar 

  98. S.A. Barr, G.S. Kedziora, A.M. Ecker, J.C. Moller, R.J. Berry, T.D. Breitzman, Bond breaking in epoxy systems: a combined qm/mm approach. J. Chem. Phys. 144(24), 244904 (2016)

    Google Scholar 

  99. B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, M. Ando, Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61(11), 1615–1624 (2001)

    Article  CAS  Google Scholar 

  100. A. Gilat, R.K. Goldberg, G.D. Roberts, Strain rate sensitivity of epoxy resin in tensile and shear loading. J. Aerosp. Eng. 20(2), 75–89 (2007)

    Article  Google Scholar 

  101. X. Wu, A. Aramoon, J.A. El-Awady, A hierarchical multiscale approach for modeling the deformation and failure of epoxy-based polymer matrix composites. Under Review (2019)

    Google Scholar 

  102. A.T. DiBenedetto, Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater. Sci. Eng. A 302(1), 74–82 (2001)

    Article  Google Scholar 

  103. D.G.D. Galpaya, J.F.S. Fernando, L. Rintoul, N. Motta, E.R. Waclawik, C. Yan, G.A. George, The effect of graphene oxide and its oxidized debris on the cure chemistry and interphase structure of epoxy nanocomposites. Polymer 71, 122–134 (2015)

    Article  CAS  Google Scholar 

  104. Y. Gan, Effect of interface structure on mechanical properties of advanced composite materials. Int. J. Mol. Sci. 10(12), 5115–5134 (2009)

    Article  CAS  Google Scholar 

  105. M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R. Rep. 63(1), 1–30 (2008)

    Article  Google Scholar 

  106. J. Zhu, H. Peng, F. Rodriguez-Macias, J.L. Margrave, V.N. Khabashesku, A.M. Imam, K. Lozano, E.V. Barrera, Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14(7), 643–648 (2004)

    Article  CAS  Google Scholar 

  107. Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 35(10), 1225–1232 (2004)

    Article  CAS  Google Scholar 

  108. M. Yang, V. Koutsos, M. Zaiser, Interactions between polymers and carbon nanotubes: a molecular dynamics study. J. Phys. Chem. B 109(20), 10009–10014 (2005)

    Article  CAS  Google Scholar 

  109. H. Liu, M. Li, Z.-Y. Lu, Z.-G. Zhang, C.-C. Sun, T. Cui, Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system. Macromolecules 44(21), 8650–8660 (2011)

    Article  CAS  Google Scholar 

  110. S. Kari, H. Berger, U. Gabbert, R. Guinovart-Dıaz, J. Bravo-Castillero, R. Rodrıguez-Ramos, Evaluation of influence of interphase material parameters on effective material properties of three phase composites. Combust. Sci. Technol. 68(3–4), 684–691 (2008)

    Article  CAS  Google Scholar 

  111. L. Schadler, Nanocomposites: model interfaces. Nat. Mater. 6(4), 257 (2007)

    Google Scholar 

  112. N. Subramanian, A. Rai, A. Chattopadhyay, Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites. Carbon 94, 661–672 (2015)

    Article  CAS  Google Scholar 

  113. M.J. Stevens, Manipulating connectivity to control fracture in network polymer adhesives. Macromolecules 34(5), 1411–1415 (2001)

    Article  CAS  Google Scholar 

  114. E. Brini, E.A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero, N.F.A. van der Vegt, Systematic coarse-graining methods for soft matter simulations–a review. Soft Matter 9(7), 2108–2119 (2013)

    Article  CAS  Google Scholar 

  115. A.J. Liu, G.S. Grest, M.C. Marchetti, G.M. Grason, M.O. Robbins, G.H. Fredrickson, M. Rubinstein, M.O. De La Cruz, Opportunities in theoretical and computational polymeric materials and soft matter. Soft Matter 11(12), 2326–2332 (2015)

    Article  CAS  Google Scholar 

  116. S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, Coarse grain models and the computer simulation of soft materials. J. Phys. Condens. Matter 16(15), R481 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaafar A. El-Awady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., El-Awady, J.A. (2020). Multiscale Modeling of Epoxies and Epoxy-Based Composites. In: Ghosh, S., Woodward, C., Przybyla, C. (eds) Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-030-40562-5_10

Download citation

Publish with us

Policies and ethics