Skip to main content

Steatosis Assessment by Controlled Attenuation Parameter (CAP™)

  • Chapter
  • First Online:
Liver Elastography
  • 609 Accesses

Abstract

Steatosis is a reversible and benign condition. However, recent studies have shown that it can be independently associated with fibrosis progression, a lower response rate to antiviral treatment, or even the occurrence of hepatocellular carcinoma, especially in the context of metabolic syndrome. With the increasing prevalence of non-alcoholic fatty liver disease, the evaluation of steatosis is essential for routine patient care but also in clinical studies.

A non-invasive parameter, controlled attenuation parameter (CAP), based on vibration-controlled transient elastography (VCTE), has been developed to assess liver steatosis on the FibroScan device, concomitantly to liver stiffness measurement. CAP provides a rapid and inexpensive bedside assessment of liver steatosis. Based on multiple studies for various liver diseases, CAP cutoff values for S1, S2, and S3 are 240, 260, and 290 dB/m with AUROCs from 0.70 to 0.94, respectively. Usage of the XL-CAP requires ca. 20% higher cutoff values if compared to the M-CAP probe. It is recommended to fast 2 h prior to CAP measurements since food intake can steatosis-independent CAP modulation.

The purpose of this chapter is to explain the CAP measurement principle and rationale and to give an exhaustive review of its diagnostic performance in various chronic liver diseases. Results relative to its ability to follow up disease progression or response to treatment will also be provided. Eventually, results about CAP reproducibility and factors that may influence CAP will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrell GC. Fatty liver disease: NASH and related disorders. Malden: Blackwell Publishing; 2004.

    Book  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23.

    Article  PubMed  Google Scholar 

  3. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    Article  PubMed  Google Scholar 

  4. Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, et al. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med. 2000;132(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  5. Leandro G, Mangia A, Hui J, Fabris P, Rubbia-Brandt L, Colloredo G, et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology. 2006;130(6):1636–42.

    Article  PubMed  Google Scholar 

  6. Asselah T, Rubbia-Brandt L, Marcellin P, Negro F. Steatosis in chronic hepatitis C: why does it really matter? Gut. 2006;55(1):123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–S112.

    Article  CAS  PubMed  Google Scholar 

  8. Dixon JB, Bhathal PS, O'Brien PE. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology. 2001;121(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  9. Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP. Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol. 2007;102(2):399–408.

    Article  CAS  PubMed  Google Scholar 

  10. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015;13(4):643–54; quiz e39–40.

    Article  PubMed  Google Scholar 

  11. Castera L, Hezode C, Roudot-Thoraval F, Bastie A, Zafrani ES, Pawlotsky JM, et al. Worsening of steatosis is an independent factor of fibrosis progression in untreated patients with chronic hepatitis C and paired liver biopsies. Gut. 2003;52(2):288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fartoux L, Chazouilleres O, Wendum D, Poupon R, Serfaty L. Impact of steatosis on progression of fibrosis in patients with mild hepatitis C. Hepatology. 2005;41(1):82–7.

    Article  PubMed  Google Scholar 

  13. Poynard T, Ratziu V, McHutchison J, Manns M, Goodman Z, Zeuzem S, et al. Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology. 2003;38(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  14. Harrison SA, Brunt EM, Qazi RA, Oliver DA, Neuschwander-Tetri BA, Di Bisceglie AM, et al. Effect of significant histologic steatosis or steatohepatitis on response to antiviral therapy in patients with chronic hepatitis C. Clin Gastroenterol Hepatol. 2005;3(6):604–9.

    Article  PubMed  Google Scholar 

  15. Ohata K, Hamasaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K, et al. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer. 2003;97(12):3036–43.

    Article  PubMed  Google Scholar 

  16. Kurosaki M, Hosokawa T, Matsunaga K, Hirayama I, Tanaka T, Sato M, et al. Hepatic steatosis in chronic hepatitis C is a significant risk factor for developing hepatocellular carcinoma independent of age, sex, obesity, fibrosis stage and response to interferon therapy. Hepatol Res. 2010;40(9):870–7.

    Article  PubMed  Google Scholar 

  17. Berzigotti A. Getting closer to a point-of-care diagnostic assessment in patients with chronic liver disease: controlled attenuation parameter for steatosis. J Hepatol. 2014;60(5):910–2.

    Article  PubMed  Google Scholar 

  18. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495–500.

    Article  CAS  PubMed  Google Scholar 

  19. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898–906.

    Article  PubMed  Google Scholar 

  20. Grant A, Neuberger J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut. 1999;45(Suppl 4):1–11.

    Google Scholar 

  21. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol. 2009;51(3):433–45.

    Article  PubMed  Google Scholar 

  22. EASL. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402.

    Article  Google Scholar 

  23. Zhang YN, Fowler KJ, Hamilton G, Cui JY, Sy EZ, Balanay M, et al. Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol. 2018;91(1089):20170959.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bohte AE, van Werven JR, Bipat S, Stoker J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol. 2011;21(1):87–97.

    Article  PubMed  Google Scholar 

  25. Uhrig M, Mueller J, Longerich T, Straub BK, Buschle LR, Schlemmer HP, et al. Susceptibility based multiparametric quantification of liver disease: non-invasive evaluation of steatosis and iron overload. Magn Reson Imaging. 2019;63:114–22.

    Article  CAS  PubMed  Google Scholar 

  26. Sasso M, Beaugrand M, de Ledinghen V, Douvin C, Marcellin P, Poupon R, et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36(11):1825–35.

    Article  PubMed  Google Scholar 

  27. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022–30.

    Article  PubMed  Google Scholar 

  28. Wong VW, Chan WK, Chitturi S, Chawla Y, Dan YY, Duseja A, et al. Asia-Pacific working party on non-alcoholic fatty liver disease guidelines 2017-part 1: definition, risk factors and assessment. J Gastroenterol Hepatol. 2018;33(1):70–85.

    Article  PubMed  Google Scholar 

  29. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases. Hepatology. 2018;67(1):328–57.

    Article  PubMed  Google Scholar 

  30. Ferraioli G, Wong VW, Castera L, Berzigotti A, Sporea I, Dietrich CF, et al. Liver ultrasound elastography: an update to the World Federation for ultrasound in medicine and biology guidelines and recommendations. Ultrasound Med Biol. 2018;44(12):2419–40.

    Article  PubMed  Google Scholar 

  31. Szabo TL. Diagnostic ultrasound imaging : inside out. Boston: Elsevier Academic Press; 2004.

    Google Scholar 

  32. Bushberg JT. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 848.

    Google Scholar 

  33. Kuc R. Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization. IEEE Trans Biomed Eng. 1980;27(6):312–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fink M, Hottier F, Cardoso JF. Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis. Ultrason Imaging. 1983;5(2):117–35.

    CAS  PubMed  Google Scholar 

  35. Maklad NF, Ophir J, Balsara V. Attenuation of ultrasound in normal liver and diffuse liver disease in vivo. Ultrason Imaging. 1984;6(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor KJ, Riely CA, Hammers L, Flax S, Weltin G, Garcia-Tsao G, et al. Quantitative US attenuation in normal liver and in patients with diffuse liver disease: importance of fat. Radiology. 1986;160(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  37. Garra BS, Insana MF, Shawker TH, Russell MA. Quantitative estimation of liver attenuation and echogenicity: normal state versus diffuse liver disease. Radiology. 1987;162(1 Pt 1):61–7.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson LS, Robinson DE, Griffiths KA, Manoharan A, Doust BD. Evaluation of ultrasonic attenuation in diffuse diseases of spleen and liver. Ultrason Imaging. 1987;9(4):236–47.

    Article  CAS  PubMed  Google Scholar 

  39. Lu ZF, Zagzebski JA, Lee FT. Ultrasound backscatter and attenuation in human liver with diffuse disease. Ultrasound Med Biol. 1999;25(7):1047–54.

    Article  CAS  PubMed  Google Scholar 

  40. Fujii Y, Taniguchi N, Itoh K, Shigeta K, Wang Y, Tsao JW, et al. A new method for attenuation coefficient measurement in the liver: comparison with the spectral shift central frequency method. J Ultrasound Med. 2002;21(7):783–8.

    Article  PubMed  Google Scholar 

  41. Sasso M, Audiere S, Kemgang A, Gaouar F, Corpechot C, Chazouilleres O, et al. Liver steatosis assessed by controlled attenuation parameter (CAP) measured with the XL probe of the fibroscan: a pilot study assessing diagnostic accuracy. Ultrasound Med Biol. 2016;42(1):92–103.

    Article  PubMed  Google Scholar 

  42. Jensen JA. Field: a program for simulating ultrasound systems. In: 10th Nordicbaltic conference on biomedical Imaging, vol. 4. 1996. pp. 351–3.

    Google Scholar 

  43. Sasso M, Tengher-Barna I, Ziol M, Miette V, Fournier C, Sandrin L, et al. Novel controlled attenuation parameter for noninvasive assessment of steatosis using Fibroscan®: validation in chronic hepatitis C. J Viral Hepat. 2012;19(4):244–53.

    Article  CAS  PubMed  Google Scholar 

  44. Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2014;29(7):1470–6.

    Article  CAS  PubMed  Google Scholar 

  45. Myers RP, Pollett A, Kirsch R, Pomier-Layrargues G, Beaton M, Levstik M, et al. Controlled attenuation parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int. 2012;32(6):902–10.

    Article  PubMed  Google Scholar 

  46. Myers RP, Pomier-Layrargues G, Kirsch R, Pollett A, Duarte-Rojo A, Wong D, et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology. 2012;55(1):199–208.

    Article  PubMed  Google Scholar 

  47. Wear KA. The effect of trabecular material properties on the frequency dependence of backscatter from cancellous bone. J Acoust Soc Am. 2003;114(1):62–5.

    Article  PubMed  Google Scholar 

  48. Mendes LC, Ferreira PA, Miotto N, Zanaga L, Goncales ESL, Pedro MN, et al. Elastogram quality assessment score in vibration-controlled transient elastography: diagnostic performance compared to digital morphometric analysis of liver biopsy in chronic hepatitis C. J Viral Hepat. 2018;25(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  49. Cardoso AC, Beaugrand M, de Ledinghen V, Douvin C, Poupon R, Trinchet JC, et al. Diagnostic performance of controlled attenuation parameter for predicting steatosis grade in chronic hepatitis B. Ann Hepatol. 2015;14(6):826–36.

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Wu D, Wang M, Chen E, Bai L, Liu C, et al. Controlled attenuation parameter for the detection of hepatic steatosis in patients with chronic hepatitis B. Infect Dis. 2016;48(9):670–5.

    Article  CAS  Google Scholar 

  51. Kumar M, Rastogi A, Singh T, Behari C, Gupta E, Garg H, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis: does etiology affect performance? J Gastroenterol Hepatol. 2013;28(7):1194–201.

    Article  PubMed  Google Scholar 

  52. Wang CY, Lu W, Hu DS, Wang GD, Cheng XJ. Diagnostic value of controlled attenuation parameter for liver steatosis in patients with chronic hepatitis B. World J Gastroenterol. 2014;20(30):10585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ferraioli G, Tinelli C, Lissandrin R, Zicchetti M, Dal Bello B, Filice G, et al. Controlled attenuation parameter for evaluating liver steatosis in chronic viral hepatitis. World J Gastroenterol. 2014;20(21):6626–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Runge JH, Smits LP, Verheij J, Depla A, Kuiken SD, Baak BC, et al. MR spectroscopy-derived proton density fat fraction is superior to controlled attenuation parameter for detecting and grading hepatic steatosis. Radiology. 2018;286(2):547–56.

    Article  PubMed  Google Scholar 

  55. Siddiqui MS, Vuppalanchi R, Van Natta ML, Hallinan E, Kowdley KV, Abdelmalek M, et al. Vibration-controlled transient elastography to assess fibrosis and steatosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2018;17(1):156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(6):1717–30.

    Article  PubMed  Google Scholar 

  57. Thiele M, Rausch V, Fluhr G, Kjærgaard M, Piecha F, Mueller J, et al. Controlled attenuation parameter and alcoholic hepatic steatosis: diagnostic accuracy and role of alcohol detoxification. J Hepatol. 2018;68(5):1025–32.

    Article  CAS  PubMed  Google Scholar 

  58. Shen F, Zheng RD, Shi JP, Mi YQ, Chen GF, Hu X, et al. Impact of skin capsular distance on the performance of controlled attenuation parameter in patients with chronic liver disease. Liver Int. 2015;35(11):2392–400.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Friedrich-Rust M, Romen D, Vermehren J, Kriener S, Sadet D, Herrmann E, et al. Acoustic radiation force impulse-imaging and transient elastography for non-invasive assessment of liver fibrosis and steatosis in NAFLD. Eur J Radiol. 2012;81(3):e325–31.

    Article  PubMed  Google Scholar 

  60. Naveau S, Voican CS, Lebrun A, Gaillard M, Lamouri K, Njike-Nakseu M, et al. Controlled attenuation parameter for diagnosing steatosis in bariatric surgery candidates with suspected nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2017;29(9):1022–30.

    Article  PubMed  Google Scholar 

  61. Shi KQ, Tang JZ, Zhu XL, Ying L, Li DW, Gao J, et al. Controlled attenuation parameter for the detection of steatosis severity in chronic liver disease: a meta-analysis of diagnostic accuracy. J Gastroenterol Hepatol. 2014;29(6):1149–58.

    Article  PubMed  Google Scholar 

  62. Wang Y, Fan Q, Wang T, Wen J, Wang H, Zhang T. Controlled attenuation parameter for assessment of hepatic steatosis grades: a diagnostic meta-analysis. Int J Clin Exp Med. 2015;8(10):17654–63.

    PubMed  PubMed Central  Google Scholar 

  63. Pu K, Wang Y, Bai S, Wei H, Zhou Y, Fan J, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019;19(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Ledinghen V, Hiriart JB, Vergniol J, Merrouche W, Bedossa P, Paradis V. Controlled attenuation parameter (CAP) with the XL probe of the Fibroscan®: a comparative study with the M probe and liver biopsy. Dig Dis Sci. 2017;62(9):2569–77.

    Article  PubMed  Google Scholar 

  65. Chan WK, Nik Mustapha NR, Wong GL, Wong VW, Mahadeva S. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population. United European Gastroenterol J. 2017;5(1):76–85.

    Article  PubMed  Google Scholar 

  66. Chan WK, Nik Mustapha NR, Mahadeva S, Wong VW, Cheng JY, Wong GL. Can the same controlled attenuation parameter cut-offs be used for M and XL probes for diagnosing hepatic steatosis? J Gastroenterol Hepatol. 2018;33(10):1787–94.

    Article  PubMed  Google Scholar 

  67. de Ledinghen V, Vergniol J, Foucher J, Merrouche W, le Bail B. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int. 2012;32(6):911–8.

    Article  PubMed  Google Scholar 

  68. Xu L, Lu W, Li P, Shen F, Mi YQ, Fan JG. A comparison of hepatic steatosis index, controlled attenuation parameter and ultrasound as noninvasive diagnostic tools for steatosis in chronic hepatitis B. Dig Liver Dis. 2017;49(8):910–7.

    Article  PubMed  Google Scholar 

  69. Jun BG, Park WY, Park EJ, Jang JY, Jeong SW, Lee SH, et al. A prospective comparative assessment of the accuracy of the FibroScan in evaluating liver steatosis. PLoS One. 2017;12(8):e0182784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ferraioli G, Tinelli C, De Silvestri A, Lissandrin R, Above E, Dellafiore C, et al. The clinical value of controlled attenuation parameter for the noninvasive assessment of liver steatosis. Liver Int. 2016;36(12):1860–6.

    Article  PubMed  Google Scholar 

  71. Ferraioli G, Calcaterra V, Lissandrin R, Guazzotti M, Maiocchi L, Tinelli C, et al. Noninvasive assessment of liver steatosis in children: the clinical value of controlled attenuation parameter. BMC Gastroenterol. 2017;17(1):61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fujiwara Y, Kuroda H, Abe T, Ishida K, Oguri T, Noguchi S, et al. The B-mode image-guided ultrasound attenuation parameter accurately detects hepatic steatosis in chronic liver disease. Ultrasound Med Biol. 2018;44(11):2223–32.

    Article  PubMed  Google Scholar 

  73. Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150(3):626–37.

    Article  PubMed  Google Scholar 

  74. Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152(3):598–607.

    Article  PubMed  Google Scholar 

  75. Karlas T, Petroff D, Garnov N, Bohm S, Tenckhoff H, Wittekind C, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS One. 2014;9(3):e91987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ooi GJ, Earnest A, Kemp WW, Burton PR, Laurie C, Majeed A, et al. Evaluating feasibility and accuracy of non-invasive tests for nonalcoholic fatty liver disease in severe and morbid obesity. Int J Obes. 2018;42(11):1900–11.

    Article  Google Scholar 

  77. Arslanow A, Teutsch M, Walle H, Grunhage F, Lammert F, Stokes CS. Short-term hypocaloric high-fiber and high-protein diet improves hepatic steatosis assessed by controlled attenuation parameter. Clin Transl Gastroenterol. 2016;7(6):e176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rezende RE, Duarte SM, Stefano JT, Roschel H, Gualano B, de Sa Pinto AL, et al. Randomized clinical trial: benefits of aerobic physical activity for 24 weeks in postmenopausal women with nonalcoholic fatty liver disease. Menopause. 2016;23(8):876–83.

    Article  PubMed  Google Scholar 

  79. Gollisch KS, Lindhorst A, Raddatz D. EndoBarrier gastrointestinal liner in type 2 diabetic patients improves liver fibrosis as assessed by liver elastography. Exp Clin Endocrinol Diabetes. 2017;125(2):116–21.

    CAS  PubMed  Google Scholar 

  80. Garg H, Aggarwal S, Shalimar YR, Datta Gupta S, Agarwal L, et al. Utility of transient elastography (fibroscan) and impact of bariatric surgery on nonalcoholic fatty liver disease (NAFLD) in morbidly obese patients. Surg Obes Relat Dis. 2018;14(1):81–91.

    Article  PubMed  Google Scholar 

  81. Paul J, Venugopal RV, Peter L, Shetty KNK, Shetti MP. Measurement of controlled attenuation parameter: a surrogate marker of hepatic steatosis in patients of nonalcoholic fatty liver disease on lifestyle modification - a prospective follow-up study. Arq Gastroenterol. 2018;55(1):7–13.

    Article  PubMed  Google Scholar 

  82. Papapostoli I, Lammert F, Stokes CS. Effect of short-term vitamin D correction on hepatic steatosis as quantified by controlled attenuation parameter (CAP). J Gastrointestin Liver Dis. 2016;25(2):175–81.

    Article  PubMed  Google Scholar 

  83. Lee YH, Kim JH, Kim SR, Jin HY, Rhee EJ, Cho YM, et al. Lobeglitazone, a novel thiazolidinedione, improves non-alcoholic fatty liver disease in type 2 diabetes: its efficacy and predictive factors related to responsiveness. J Korean Med Sci. 2017;32(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  84. Honda Y, Kessoku T, Sumida Y, Kobayashi T, Kato T, Ogawa Y, et al. Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study. BMC Gastroenterol. 2017;17(1):96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ogasawara N, Kobayashi M, Akuta N, Kominami Y, Fujiyama S, Kawamura Y, et al. Serial changes in liver stiffness and controlled attenuation parameter following direct-acting antiviral therapy against hepatitis C virus genotype 1b. J Med Virol. 2018;90(2):313–9.

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi N, Iijima H, Tada T, Kumada T, Yoshida M, Aoki T, et al. Changes in liver stiffness and steatosis among patients with hepatitis C virus infection who received direct-acting antiviral therapy and achieved sustained virological response. Eur J Gastroenterol Hepatol. 2018;30(5):546–51.

    Article  PubMed  Google Scholar 

  87. Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, Murohisa T, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019;21(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  88. Leite NC, Viegas BB, Villela-Nogueira CA, Carlos FO, Cardoso CRL, Salles GF. Efficacy of diacerein in reducing liver steatosis and fibrosis in patients with type 2 diabetes and non-alcoholic fatty liver disease: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2019;21(5):1266–70.

    Article  CAS  PubMed  Google Scholar 

  89. Liu K, Wong VW, Lau K, Liu SD, Tse YK, Yip TC, et al. Prognostic value of controlled attenuation parameter by transient elastography. Am J Gastroenterol. 2017;112(12):1812–23.

    Article  PubMed  Google Scholar 

  90. Margini C, Murgia G, Stirnimann G, De Gottardi A, Semmo N, Casu S, et al. Prognostic significance of controlled attenuation parameter in patients with compensated advanced chronic liver disease. Hepatol Commun. 2018;2(8):929–40.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Scheiner B, Steininger L, Semmler G, Unger LW, Schwabl P, Bucsics T, et al. Controlled attenuation parameter does not predict hepatic decompensation in patients with advanced chronic liver disease. Liver Int. 2019;39(1):127–35.

    Article  PubMed  Google Scholar 

  92. Lee HW, Park SY, Kim SU, Jang JY, Park H, Kim JK, et al. Discrimination of nonalcoholic steatohepatitis using transient elastography in patients with nonalcoholic fatty liver disease. PLoS One. 2016;11(6):e0157358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sasso M, Chan WK, Harrison SA, Czernichow S, Allison M, Tsochatzis E, et al. FS3 FibroScan-based score to identify NASH patients with NAS≥4 AND F≥2 Development in a NAFLD UK cohort - external validation in a Malaysian NAFLD cohort, a US screening cohort and a French bariatric surgery cohort. Liver meeting of the American Association for the Study of Liver Disease (AASLD); San Francisco, CA, USA; 2018.

    Google Scholar 

  94. Boursier J, Zheng M-H, Wong VW, Michalak S, Li Y, Chan AW, et al. External validation in NAFLD cohorts of a FibroScan-based score combining liver stiffness, controlled attenuation parameter and AST to identify patients with active NASH (NAS≥4) and significant fibrosis (F≥2). International Liver Congress (ILC), European Association for the Study of the Liver (EASL); Vienna, Austria; 2019.

    Google Scholar 

  95. Vuppalanchi R, Siddiqui MS, Van Natta ML, Hallinan E, Brandman D, Kowdley K, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology. 2018;67(1):134–44.

    Article  PubMed  Google Scholar 

  96. Ferraioli G, Tinelli C, Lissandrin R, Zicchetti M, Rondanelli M, Perani G, et al. Interobserver reproducibility of the controlled attenuation parameter (CAP) for quantifying liver steatosis. Hepatol Int. 2014;8(4):576–81.

    Article  PubMed  Google Scholar 

  97. Recio E, Cifuentes C, Macias J, Mira JA, Parra-Sanchez M, Rivero-Juarez A, et al. Interobserver concordance in controlled attenuation parameter measurement, a novel tool for the assessment of hepatic steatosis on the basis of transient elastography. Eur J Gastroenterol Hepatol. 2013;25(8):905–11.

    Article  CAS  PubMed  Google Scholar 

  98. Yilmaz Y, Ergelen R, Akin H, Imeryuz N. Noninvasive detection of hepatic steatosis in patients without ultrasonographic evidence of fatty liver using the controlled attenuation parameter evaluated with transient elastography. Eur J Gastroenterol Hepatol. 2013;25(11):1330–4.

    Article  PubMed  Google Scholar 

  99. de Ledinghen V, Vergniol J, Capdepont M, Chermak F, Hiriart JB, Cassinotto C, et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol. 2014;60(5):1026–31.

    Article  PubMed  Google Scholar 

  100. Chon YE, Jung KS, Kim SU, Park JY, Park YN, Kim DY, et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: a prospective study of a native Korean population. Liver Int. 2014;34(1):102–9.

    Article  PubMed  Google Scholar 

  101. Shen F, Zheng RD, Mi YQ, Wang XY, Pan Q, Chen GY, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol. 2014;20(16):4702–11.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jung KS, Kim BK, Kim SU, Chon YE, Chun KH, Kim SB, et al. Factors affecting the accuracy of controlled attenuation parameter (CAP) in assessing hepatic steatosis in patients with chronic liver disease. PLoS One. 2014;9(6):e98689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chon YE, Jung KS, Kim KJ, Joo DJ, Kim BK, Park JY, et al. Normal controlled attenuation parameter values: a prospective study of healthy subjects undergoing health checkups and liver donors in Korea. Dig Dis Sci. 2015;60(1):234–42.

    Article  PubMed  Google Scholar 

  104. Mi YQ, Shi QY, Xu L, Shi RF, Liu YG, Li P, et al. Controlled attenuation parameter for noninvasive assessment of hepatic steatosis using Fibroscan(R): validation in chronic hepatitis B. Dig Dis Sci. 2015;60(1):243–51.

    Article  CAS  PubMed  Google Scholar 

  105. Ratchatasettakul K, Rattanasiri S, Promson K, Sringam P, Sobhonslidsuk A. The inverse effect of meal intake on controlled attenuation parameter and liver stiffness as assessed by transient elastography. BMC Gastroenterol. 2017;17(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kjaergaard M, Thiele M, Jansen C, Staehr Madsen B, Gortzen J, Strassburg C, et al. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal. PLoS One. 2017;12(4):e0173992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Vuppalanchi R, Weber R, Russell S, Gawrieh S, Samala N, Slaven JE, et al. Is fasting necessary for individuals with nonalcoholic fatty liver disease to undergo vibration-controlled transient elastography? Am J Gastroenterol. 2019;114(6):995–7.

    Article  PubMed  Google Scholar 

  108. Galaski J, Schulz L, Krause J, Lohse AW. Discordance in steatosis classification between liver biopsy and transient elastography for high controlled attenuation parameter (CAP) values. Z Gastroenterol. 2018;56(1):36–42.

    Article  PubMed  Google Scholar 

  109. Wong VW, Petta S, Hiriart JB, Camma C, Wong GL, Marra F, et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J Hepatol. 2017;67(3):577–84.

    Article  PubMed  Google Scholar 

  110. Caussy C, Alquiraish MH, Nguyen P, Hernandez C, Cepin S, Fortney LE, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology. 2018;67(4):1348–59.

    Article  CAS  PubMed  Google Scholar 

  111. Petta S, Maida M, Macaluso FS, Di Marco V, Camma C, Cabibi D, et al. The severity of steatosis influences liver stiffness measurement in patients with nonalcoholic fatty liver disease. Hepatology. 2015;62(4):1101–10.

    Article  PubMed  Google Scholar 

  112. Eddowes P, Sasso M, Fournier C, Vuppalanchi R, Newsome P. Steatosis and liver stiffness measurements using transient elastography. Hepatology. 2016;64(2):700.

    Article  PubMed  Google Scholar 

  113. Karlas T, Beer S, Babel J, Busse H, Schaudinn A, Linder N, et al. Do we need controlled attenuation parameter adjustment for fibrosis estimation in nonalcoholic fatty liver disease patients? Hepatology. 2017;65(6):2126–8.

    Article  PubMed  Google Scholar 

  114. Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol. 2015;41(5):1161–79.

    Article  PubMed  Google Scholar 

  115. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, et al. Impact of controlled attenuation parameter on detecting fibrosis using liver stiffness measurement. Aliment Pharmacol Ther. 2018;47(7):989–1000.

    Article  CAS  PubMed  Google Scholar 

  116. Masaki K, Takaki S, Hyogo H, Kobayashi T, Fukuhara T, Naeshiro N, et al. Utility of controlled attenuation parameter measurement for assessing liver steatosis in Japanese patients with chronic liver diseases. Hepatol Res. 2013;43(11):1182–9.

    Article  PubMed  Google Scholar 

  117. Lupsor-Platon M, Feier D, Stefanescu H, Tamas A, Botan E, Sparchez Z, et al. Diagnostic accuracy of controlled attenuation parameter measured by transient elastography for the non-invasive assessment of liver steatosis: a prospective study. J Gastrointestin Liver Dis. 2015;24(1):35–42.

    Article  PubMed  Google Scholar 

  118. Andrade P, Rodrigues S, Rodrigues-Pinto E, Gaspar R, Lopes J, Lopes S, et al. Diagnostic accuracy of controlled attenuation parameter for detecting hepatic steatosis in patients with chronic liver disease. GE Port J Gastroenterol. 2017;24(4):161–8.

    Article  PubMed  Google Scholar 

  119. Rout G, Kedia S, Nayak B, Yadav R, Das P, Acharya SK, et al. Controlled attenuation parameter for assessment of hepatic steatosis in Indian patients. J Clin Exp Hepatol. 2019;9(1):13–21.

    Article  PubMed  Google Scholar 

  120. de Ledinghen V, Wong GL, Vergniol J, Chan HL, Hiriart JB, Chan AW, et al. Controlled attenuation parameter for the diagnosis of steatosis in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31(4):848–55.

    Article  PubMed  Google Scholar 

  121. Lemoine M, Assoumou L, De Wit S, Girard PM, Valantin MA, Katlama C, et al. Diagnostic accuracy of noninvasive markers of steatosis, NASH, and liver fibrosis in HIV-monoinfected individuals at risk of nonalcoholic fatty liver disease (NAFLD): results from the ECHAM study. J Acquir Immune Defic Syndr. 2019;80(4):e86–94.

    Article  PubMed  Google Scholar 

  122. Yen YH, Kuo FY, Lin CC, Chen CL, Chang KC, Tsai MC, et al. Predicting hepatic steatosis in living liver donors via controlled attenuation parameter. Transplant Proc. 2018;50(10):3533–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasso, M., Sandrin, L. (2020). Steatosis Assessment by Controlled Attenuation Parameter (CAP™). In: Mueller, S. (eds) Liver Elastography. Springer, Cham. https://doi.org/10.1007/978-3-030-40542-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40542-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40541-0

  • Online ISBN: 978-3-030-40542-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics