Skip to main content

Prediction of HCC Using Liver Stiffness Measurements

  • Chapter
  • First Online:
Liver Elastography
  • 608 Accesses

Abstract

Advanced liver fibrosis or cirrhosis is one of the most important risk factors of hepatocellular carcinoma (HCC) in chronic liver diseases and an accurate assessment of liver fibrosis facilitates precise risk prediction for HCC. Non-invasive assessment of liver fibrosis via liver stiffness measurement (LSM) with transient elastography has been one of the most rapidly advancing fields in hepatology over the last decade. LSM is a well-validated non-invasive tool for advanced liver fibrosis and cirrhosis and LS highly correlates with the future risk of HCC. Meanwhile, LSM plays an important role before, during, and after HCC treatment. Moreover, LSM-based risk prediction models provide an accurate risk-stratification before and after antiviral treatment. Thus, several LSM-based HCC risk prediction models (namely, LSM-HCC score, modified REACH-B) are useful to prioritize patients for HCC surveillance. LSM also helps predict HCC treatment outcomes, including HCC recurrence, postoperative complications and survival. While earlier studies suggested an increased risk to develop HCC starting from a cutoff value >20 kPa, this threshold has been continuously lowered to 13 kPa, depending on the etiology of the liver disease. There is also a diagnostic role of elastography for HCC. Two-dimensional elastography is used for differentiating benign and malignant liver tumors. Hence patients either at risk of HCC or already developed HCC should receive LSM on a regular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng JY, Wong GL. Advances in the diagnosis and treatment of liver fibrosis. Hepatoma Res. 2017;3:156–69.

    Google Scholar 

  2. Pinter M, Trauner M, Peck-Radosavljevic M, Sieghart W. Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open. 2016;1(2):e000042.

    PubMed  PubMed Central  Google Scholar 

  3. Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49(6):1954–61.

    PubMed  Google Scholar 

  4. Jung KS, Kim SU, Ahn SH, Park YN, Kim DY, Park JY, et al. Risk assessment of hepatitis B virus-related hepatocellular carcinoma development using liver stiffness measurement (FibroScan). Hepatology. 2011;53(3):885–94.

    PubMed  Google Scholar 

  5. Jeon MY, Lee HW, Kim SU, Heo JY, Han S, Kim BK, et al. Subcirrhotic liver stiffness by FibroScan correlates with lower risk of hepatocellular carcinoma in patients with HBV-related cirrhosis. Hepatol Int. 2017;11(3):268–76.

    PubMed  Google Scholar 

  6. Adler M, Larocca L, Trovato FM, Marcinkowski H, Pasha Y, Taylor-Robinson SD. Evaluating the risk of hepatocellular carcinoma in patients with prominently elevated liver stiffness measurements by FibroScan: a multicentre study. HPB (Oxford). 2016;18(8):678–83.

    Google Scholar 

  7. Shuang-Ming T, Ping Z, Ying Q, Li-Rong C, Ping Z, Rui-Zhen L. Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions. Acad Radiol. 2011;18(7):810–5.

    PubMed  Google Scholar 

  8. Garteiser P, Doblas S, Daire JL, Wagner M, Leitao H, Vilgrain V, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol. 2012;22(10):2169–77.

    PubMed  Google Scholar 

  9. Subramaniam S, Wong VW, Tse YK, Yip TC, Chan HL, Wong GL. Impact of diabetes mellitus and hepatitis B virus coinfection on patients with chronic hepatitis C: A territory-wide cohort study. J Gastroenterol Hepatol. 2018;33(4):934–41.

    PubMed  Google Scholar 

  10. Narita Y, Genda T, Tsuzura H, Sato S, Kanemitsu Y, Ishikawa S, et al. Prediction of liver stiffness hepatocellular carcinoma in chronic hepatitis C patients on interferon-based anti-viral therapy. J Gastroenterol Hepatol. 2014;29(1):137–43.

    PubMed  Google Scholar 

  11. Wang JH, Yen YH, Yao CC, Hung CH, Chen CH, Hu TH, et al. Liver stiffness-based score in hepatoma risk assessment for chronic hepatitis C patients after successful antiviral therapy. Liver Int. 2016;36(12):1793–9.

    PubMed  Google Scholar 

  12. He T, Lopez-Olivo MA, Hur C, Chhatwal J. Systematic review: cost-effectiveness of direct-acting antivirals for treatment of hepatitis C genotypes 2-6. Aliment Pharmacol Ther. 2017;46(8):711–21.

    PubMed  Google Scholar 

  13. Ji F, Wei B, Yeo YH, Ogawa E, Zou B, Stave CD, et al. Systematic review with meta-analysis: effectiveness and tolerability of interferon-free direct-acting antiviral regimens for chronic hepatitis C genotype 1 in routine clinical practice in Asia. Aliment Pharmacol Ther. 2018;47(5):550–62.

    PubMed  Google Scholar 

  14. Cheung MCM, Walker AJ, Hudson BE, Verma S, McLauchlan J, Mutimer DJ, et al. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J Hepatol. 2016;65(4):741–7.

    PubMed  Google Scholar 

  15. Romano A, Angeli P, Piovesan S, Noventa F, Anastassopoulos G, Chemello L, et al. Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: a prospective population study. J Hepatol. 2018;69(2):345–52.

    PubMed  Google Scholar 

  16. Anrs Collaborative Study Group on Hepatocellular Carcinoma. Lack of evidence of an effect of direct-acting antivirals on the recurrence of hepatocellular carcinoma: data from three ANRS cohorts. J Hepatol. 2016;65(4):734–40.

    Google Scholar 

  17. Degasperi E, D’Ambrosio R, Iavarone M, Sangiovanni A, Aghemo A, Soffredini R, et al. Factors associated with increased risk of de novo or recurrent hepatocellular carcinoma in patients with cirrhosis treated with direct-acting antivirals for hcv infection. Clin Gastroenterol Hepatol. 2019;17(6):1183–91.e7.

    PubMed  Google Scholar 

  18. Ravaioli F, Conti F, Brillanti S, Andreone P, Mazzella G, Buonfiglioli F, et al. Hepatocellular carcinoma risk assessment by the measurement of liver stiffness variations in HCV cirrhotics treated with direct acting antivirals. Dig Liver Dis. 2018;50(6):573–9.

    PubMed  Google Scholar 

  19. Wong GL, Chan HL, Wong CK, Leung C, Chan CY, Ho PP, et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol. 2014;60(2):339–45.

    PubMed  Google Scholar 

  20. Wong VW, Chan SL, Mo F, Chan TC, Loong HH, Wong GL, et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J Clin Oncol. 2010;28(10):1660–5.

    PubMed  Google Scholar 

  21. Kim DY, Song KJ, Kim SU, Yoo EJ, Park JY, Ahn SH, et al. Transient elastography-based risk estimation of hepatitis B virus-related occurrence of hepatocellular carcinoma: development and validation of a predictive model. Onco Targets Ther. 2013;6:1463–9.

    PubMed  PubMed Central  Google Scholar 

  22. Yang H-I, Yuen M-F, Chan HL-Y, Han K-H, Chen P-J, Kim D-Y, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol. 2011;12(6):568–74.

    PubMed  Google Scholar 

  23. Lee HW, Ahn SH. Prediction models of hepatocellular carcinoma development in chronic hepatitis B patients. World J Gastroenterol. 2016;22(37):8314–21.

    PubMed  PubMed Central  Google Scholar 

  24. Jung KS, Kim SU, Song K, Park JY, Kim DY, Ahn SH, et al. Validation of hepatitis B virus-related hepatocellular carcinoma prediction models in the era of antiviral therapy. Hepatology. 2015;62(6):1757–66.

    PubMed  Google Scholar 

  25. Seo YS, Jang BK, Um SH, Hwang JS, Han KH, Kim SG, et al. Validation of risk prediction models for the development of HBV-related HCC: a retrospective multi-center 10-year follow-up cohort study. Oncotarget. 2017;8(68):113213–24.

    PubMed  PubMed Central  Google Scholar 

  26. Jeon MY, Lee HW, Kim SU, Kim BK, Park JY, Kim DY, et al. Feasibility of dynamic risk prediction for hepatocellular carcinoma development in patients with chronic hepatitis B. Liver Int. 2018;38(4):676–86.

    PubMed  Google Scholar 

  27. Abdelaziz AO, Abdelhalim H, Elsharkawy A, Shousha HI, Abdelmaksoud AH, Soliman ZA, et al. Liver stiffness measurement changes following hepatocellular carcinoma treatment with percutaneous microwave ablation or transarterial chemoembolization: a cohort study. Eur J Gastroenterol Hepatol. 2019;31(6):685–91.

    PubMed  Google Scholar 

  28. Chong CC-N, Wong GL-H, Chan AW-H, Wong VW-S, Fong AK-W, Cheung Y-S, et al. Liver stiffness measurement predicts high-grade post-hepatectomy liver failure: a prospective cohort study. J Gastroenterol Hepatol. 2017;32(2):506–14.

    PubMed  Google Scholar 

  29. Pang Q, Zhang JY, Xu XS, Song SD, Chen W, Zhou YY, et al. The prognostic values of 12 cirrhosis-relative noninvasive models in patients with hepatocellular carcinoma. Scand J Clin Lab Invest. 2015;75(1):73–84.

    PubMed  Google Scholar 

  30. Wong JS, Wong GL, Tsoi KK, Wong VW, Cheung SY, Chong CN, et al. Meta-analysis: the efficacy of anti-viral therapy in prevention of recurrence after curative treatment of chronic hepatitis B-related hepatocellular carcinoma. Aliment Pharmacol Ther. 2011;33(10):1104–12.

    PubMed  Google Scholar 

  31. Kim BK, Kim HS, Yoo EJ, Oh EJ, Park JY, Kim DY, et al. Risk assessment of clinical outcomes in Asian patients with chronic hepatitis B using enhanced liver fibrosis test. Hepatology. 2014;60(6):1911–9.

    PubMed  Google Scholar 

  32. Lee SH, Kim SU, Jang JW, Bae SH, Lee S, Kim BK, et al. Use of transient elastography to predict de novo recurrence after radiofrequency ablation for hepatocellular carcinoma. Onco Targets Ther. 2015;8:347–56.

    PubMed  PubMed Central  Google Scholar 

  33. Lee YR, Park SY, Kim SU, Jang SY, Tak WY, Kweon YO, et al. Using transient elastography to predict hepatocellular carcinoma recurrence after radiofrequency ablation. J Gastroenterol Hepatol. 2017;32(5):1079–86.

    PubMed  Google Scholar 

  34. Jung KS, Kim SU, Choi GH, Park JY, Park YN, Kim DY, et al. Prediction of recurrence after curative resection of hepatocellular carcinoma using liver stiffness measurement (FibroScan(R)). Ann Surg Oncol. 2012;19(13):4278–86.

    PubMed  Google Scholar 

  35. Marasco G, Colecchia A, Colli A, Ravaioli F, Casazza G, Bacchi Reggiani ML, et al. Role of liver and spleen stiffness in predicting the recurrence of hepatocellular carcinoma after resection. J Hepatol. 2019;70(3):440–8.

    PubMed  Google Scholar 

  36. Ripoll C, Groszmann RJ, Garcia-Tsao G, Bosch J, Grace N, Burroughs A, et al. Hepatic venous pressure gradient predicts development of hepatocellular carcinoma independently of severity of cirrhosis. J Hepatol. 2009;50(5):923–8.

    PubMed  PubMed Central  Google Scholar 

  37. Wong JS-W, Wong GL-H, Chan AW-H, Wong VW-S, Cheung Y-S, Chong C-N, et al. Liver stiffness measurement by transient elastography as a predictor on posthepatectomy outcomes. Ann Surg. 2013;257(5):922–8.

    PubMed  Google Scholar 

  38. Procopet B, Fischer P, Horhat A, Mois E, Stefanescu H, Comsa M, et al. Good performance of liver stiffness measurement in the prediction of postoperative hepatic decompensation in patients with cirrhosis complicated with hepatocellular carcinoma. Med Ultrason. 2018;20(3):272.

    PubMed  Google Scholar 

  39. Qi M, Chen Y, Zhang GQ, Meng YJ, Zhao FL, Wang J, et al. Clinical significance of preoperative liver stiffness measurements in primary HBV-positive hepatocellular carcinoma. Future Oncol. 2017;13(30):2799–810.

    PubMed  Google Scholar 

  40. Huang Z, Huang J, Zhou T, Cao H, Tan B. Prognostic value of liver stiffness measurement for the liver-related surgical outcomes of patients under hepatic resection: a meta-analysis. PLoS One. 2018;13(1):e0190512.

    PubMed  PubMed Central  Google Scholar 

Download references

Financial Support

None.

Statement of Interests

Grace Wong has served as an advisory committee member for Gilead Sciences, and as a speaker for Abbott, Abbvie, Bristol-Myers Squibb, Echosens, Furui, Gilead Sciences, Janssen, and Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Lai-Hung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, G.LH. (2020). Prediction of HCC Using Liver Stiffness Measurements. In: Mueller, S. (eds) Liver Elastography. Springer, Cham. https://doi.org/10.1007/978-3-030-40542-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40542-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40541-0

  • Online ISBN: 978-3-030-40542-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics