Skip to main content

Period Polynomials

  • Chapter
  • First Online:
On the Theory of Maass Wave Forms

Part of the book series: Universitext ((UTX))

  • 953 Accesses

Abstract

In this chapter, we discuss period polynomials that emerge from Eichler integrals on the full modular group. Period polynomials and their coefficients have significant impact on the theory of modular forms. In fact, the coefficients of these polynomials are certain values of L-functions. Moreover, by defining the cohomology of period polynomials, one can show that there is an isomorphism between two copies of the space of modular forms and the cohomology group. This is known as the Eichler-Shimura isomorphism. We give all the basic properties of period polynomials and prove the Eichler-Shimura isomorphism theorem. We continue by describing the action of Hecke operators on period polynomials, following an approach by Choie and Zagier. We omit some of the proofs due to the abundance of references in the literature or, in many cases, because we prove their analogues in the Maass forms case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics, vol. 41, 2nd edn. (Springer, New York, 1990). ISBN 978-0-387-97127-8. https://doi.org/10.1007/978-1-4612-0999-7

  2. G. Bol, Invarianten linearer Differentialgleichungen. Abh. Math. Sem. Univ. Hamburg 16(3–4), 1–28 (1949). MR33411. http://www.ams.org/mathscinet-getitem?mr=33411; https://doi.org/10.1007/BF03343515

  3. A. Borel, Automorphic Forms on \(SL_2(\mathbb {R})\) (Cambridge University Press, Cambridge, 1997). ISBN 978-0511896064. https://doi.org/10.1017/CBO9780511896064

  4. K. Bringmann, P. Guerzhoy, Z. Kent, K. Ono, Eichler-Shimura theory for mock modular forms. Math. Ann. 355(3), 1085–1121 (2013). https://doi.org/10.1007/s00208-012-0816-y

    Article  MathSciNet  Google Scholar 

  5. R.W. Bruggeman, Y. Choie, Modular cocycles and cup product. Adv. Math. 351, 296–342 (2019). arXiv:1811.10359. https://arxiv.org/abs/1811.10359; https://doi.org/10.1016/j.aim.2019.05.008

  6. D. Bump, Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55 (Cambridge University Press, Cambridge, 1997). ISBN 0-521-55098-X

    Google Scholar 

  7. D. Bump, J.W. Cogdell, E. de Shalit, D. Gaitsgory, E. Kowalski, S.S. Kudla, An Introduction to the Langlands Program (Birkhäuser Boston, Cambridge, 2004). ISBN 978-0-8176-3211-3. https://doi.org/10.1007/978-0-8176-8226-2

    Book  Google Scholar 

  8. Y.J. Choie, D. Zagier, Rational period functions for \(\mathrm {PSL}(2,\mathbb {Z})\), in A Tribute to Emil Grosswald: Number Theory and related Analysis, ed. by M. Knopp, M. Sheingorn. Contemporary Mathematics, vol. 143 (American Mathematical Society, Providence, RI, 1993), pp. 89–108

    Google Scholar 

  9. N. Diamantis, L. Rolen, Period polynomials, derivatives of L-functions, and zeros of polynomials. Res. Math. Sci. 5(9) (2018). https://doi.org/10.1007/s40687-018-0126-4

  10. F. Diamond, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer, New York, 2005). ISBN 978-0-387-23229-4. https://doi.org/10.1007/978-0-387-27226-9

  11. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale. Math. Z. 67, 267–298 (1957). https://doi.org/10.1007/BF01258863

    Article  MathSciNet  Google Scholar 

  12. M. Eichler, D. Zagier, The Theory of Jacobi Forms. Progress in Mathematics, vol. 55 (Birkhäuser Boston, Cambridge, 1985). ISBN 978-0-8176-3180-2

    Google Scholar 

  13. E. Freitag, Siegelsche Modulfunktionen. Grundlehren der Mathematischen Wissenschaften, vol. 254 (Springer, Berlin, Heidelberg, 1983). ISBN 978-3-642-68650-4. https://doi.org/10.1007/978-3-642-68649-8

  14. E. Freitag, Hilbert Modular Forms (Springer, Berlin, Heidelberg, 1990). ISBN 978-3-540-50586-0. https://doi.org/10.1007/978-3-662-02638-0

    Book  Google Scholar 

  15. P.B. Garrett, Holomorphic Hilbert Modular Forms (Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990). ISBN 0-534-10344-8

    MATH  Google Scholar 

  16. S.S. Gelbart, Automorphic Forms on Adele Groups. Annals of Mathematics Studies, vol. 83 (Princeton University Press, Princeton, 1975). ISBN 978-0-691-08156-4

    Google Scholar 

  17. J. Gimenez, T. Mühlenbruch, W. Raji, Construction of vector-valued modular integrals and vector-valued mock modular forms. Ramanujan J. 1–64 (2014). https://doi.org/10.1007/s11139-014-9606-3

  18. S.Y. Husseini, M. Knopp, Eichler cohomology and automorphic forms. Ill. J. Math. 15, 565–577 (1971). http://projecteuclid.org/euclid.ijm/1256052512

    Article  MathSciNet  Google Scholar 

  19. H. Iwaniec, Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. (American Mathematical Society, Providence, RI); Revista Matemática Iberoamericana, Madrid, 2002. ISBN 0-8218-3160-7. https://doi.org/10.1090/gsm/053

  20. H. Klingen, Introductory Lectures on Siegel Modular Forms (Cambridge University Press, Cambridge, 1990). ISBN 978-0-511-61987-8. https://doi.org/10.1017/CBO9780511619878

    Book  Google Scholar 

  21. M. Knopp, J. Lehner, W. Raji, Eichler cohomology for generalized modular forms. Int. J. Number Theory 5(6), 1049–1059 (2009). https://doi.org/10.1142/S1793042109002547

    Article  MathSciNet  Google Scholar 

  22. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd edn. Graduate Texts in Mathematics, vol. 97 (Springer, New York, 1993). ISBN 0-387-97966-2. https://doi.org/10.1007/978-1-4612-0909-6

  23. J. Kramer, Leben und Werk von Martin Eichler. Elemente der Mathematik 49, 45–60 (1994). Überarbeitete PDF-Fassung

    Google Scholar 

  24. S. Lang, Introduction to Modular Forms, 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol. 222 (Springer, Berlin, 2001). ISBN 978-3-540-07833-3. https://doi.org/10.1007/978-3-642-51447-0

  25. R. Lawrence, D. Zagier, Modular forms and quantum invariants of 3-manifolds, Sir Michael Atiyah: a great mathematician of the twentieth century, Asian J. Math. 3, 93–107 (1999)

    Article  MathSciNet  Google Scholar 

  26. Ju.I. Manin, Periods of cusp forms, and p-adic Hecke series. Mat. Sb. (N. Ser.) 92(134), 378–401 (1973). English translation appeared in: Math. USSR-Sb. 21(3), 371–393 (1973). MR345909. http://www.ams.org/mathscinet-getitem?mr=345909

  27. T. Mühlenbruch, Hecke operators on period functions for the full modular group. Int. Math. Res. Not. 77, 4127–4145 (2004). https://doi.org/10.1155/S1073792804143365

    Article  MathSciNet  Google Scholar 

  28. T. Mühlenbruch, Hecke operators on period functions for Γ0(n). J. Number Theory 118, 208–235 (2006). https://doi.org/10.1016/j.jnt.2005.09.003

    Article  MathSciNet  Google Scholar 

  29. J.J. O’Connor, E.F. Robertson, Goro Shimura. MacTutor History of Mathematics archive, University of St Andrews. http://www-history.mcs.st-andrews.ac.uk/Biographies/Shimura.html

  30. K. Ribet, W.A. Stein, Lectures on Modular Forms and Hecke Operators. https://wstein.org/books/ribet-stein/

  31. B. Schoenberg, J.R. Smart, E. Schwandt, Elliptic Modular Functions: An Introduction. Grundlehren Der Mathematischen Wissenchaften Series, vol. 203 (Springer, New York, Heidelberg, Berlin, 1974)

    Google Scholar 

  32. J.P. Serre, A Course in Arithmetic (Springer, New York, 1973). ISBN 978-0-387-90040-7. https://doi.org/10.1007/978-1-4684-9884-4

    Book  Google Scholar 

  33. G. Shimura, Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Jpn. 11, 291–311 (1959). https://doi.org/10.4099/jmath.11.291

    Article  Google Scholar 

  34. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, Princeton, NJ, 1971)

    MATH  Google Scholar 

  35. N.P. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Invent. Math. 94 (1988). https://doi.org/10.1007/BF01394347

  36. W.A. Stein, Explicitly Computing Modular Forms. Electronic notes, 2006. https://wstein.org/msri06/refs/stein-book-on-modular-forms.pdf

  37. W.A. Stein, Modular Forms, A Computational Approach. Graduate Studies in Mathematics, vol. 79 (American Mathematical Society, Providence, RI, 2007). ISBN 0-8218-3960-8. http://wstein.org/books/modform/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mühlenbruch, T., Raji, W. (2020). Period Polynomials. In: On the Theory of Maass Wave Forms. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-40475-8_2

Download citation

Publish with us

Policies and ethics