Skip to main content

Conceptual Foundations for the Temporal Big Data Analytics (TBDA) Implementation Methodology in Organizations

  • Chapter
  • First Online:
Towards Industry 4.0 — Current Challenges in Information Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 887))

Abstract

The main research goal of this chapter is to create conceptual foundations for the temporal big data (TBDA) implementation methodology. For this purpose, the conceptual research methodology has been used, encompassing such methods as critical analysis of literature, creative thinking, synthesis and analysis. Also, the results of previous research by the author have been used. In the chapter the most important challenges for the big data analytics are presented, the selected approaches for implementing BDA in organizations are discussed, the most important requirements for TBDA implementation methodology, elaborated by the author are pointed out. Finally, the comprehensive set of conceptual foundations for the successful TBDA implementation methodology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davenport, T. H., & Harris J. G. (2007). Competing on analytics: The new science of winning. Brighton: Harvard Business School Press.

    Google Scholar 

  2. Phillips-Wren, G., Iyer, L. S., Kulkarni, U., & Ariyachandra, T. (2015). Business analytics in the context of big data: A roadmap for research. Communications of the Association for Information Systems, 37, 448–472. https://doi.org/10.17705/1CAIS.03723.

    Article  Google Scholar 

  3. McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(60–66), 68–128.

    Google Scholar 

  4. Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 16, 547–578. https://doi.org/10.1007/s10257-017-0362-y.

    Article  Google Scholar 

  5. Schmarzo, B. (2013). Big Data: Understanding how data powers big business. New York: Wiley.

    Google Scholar 

  6. Erl, T., Khattak, W., & Buhler, P. (2016). Big data fundamentals. Concepts, Drivers & Techniques. Boston, Columbus, Indianapolis: Prentice Hall.

    Google Scholar 

  7. Olszak, C. M., & Mach-Król, M. (2018). A conceptual framework for assessing an organization’s readiness to adopt big data. Sustainability 10. https://doi.org/10.3390/su10103734.

    Article  Google Scholar 

  8. Braganza, A., Brooks, L., Nepelski, D., et al. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337. https://doi.org/10.1016/J.JBUSRES.2016.08.006.

    Article  Google Scholar 

  9. Kayser, V., Nehrke, B., & Zubovic, D. (2018). Data science as an innovation challenge: From big data to value proposition. Technology Innovation Management Review, 8, 16–25. https://doi.org/10.22215/timreview/1143.

    Article  Google Scholar 

  10. Fosso Wamba, S., Akter, S., Edwards, A., et al. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/J.IJPE.2014.12.031.

    Article  Google Scholar 

  11. Bosch, J. (2017). Speed, data, and ecosystems. Excelling in a software-driven world. Boca Raton: CRC Press.

    Book  Google Scholar 

  12. Vassakis, K., Petrakis, E., & Kopanakis, I. (2018). Big data analytics: Applications, prospects and challenges. In G. Skourletopoulos, G. Mastorakis, C. Mavromoustakis, et al. (Eds.) Mobile big data. Lecture Notes on Data Engineering and Communications Technologies (Vol. 10, pp. 3–20). Cham: Springer.

    Google Scholar 

  13. Mach-Król, M. (2017). Big data analytics in Polish companies—selected research results. ICT Management for Global Competitiveness and Economic Growth in Emerging Economies, 85.

    Google Scholar 

  14. Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: A systematic review and agenda for future research. Electronic Markets, 26, 173–194. https://doi.org/10.1007/s12525-016-0219-0.

    Article  Google Scholar 

  15. Ngai, E. W. T., Gunasekaran, A., Wamba, S. F., et al. (2017). Big data analytics in electronic markets. Electronic Markets, 27, 243–245. https://doi.org/10.1007/s12525-017-0261-6.

    Article  Google Scholar 

  16. Khan, S., Shakil, K. A., & Alam, M. (2018). Cloud-based big data analytics—A survey of current research and future directions. Advances in intelligent systems and computing (pp. 595–604). Singapore: Springer.

    Google Scholar 

  17. Chen, P. C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347. https://doi.org/10.1016/J.INS.2014.01.015.

    Article  Google Scholar 

  18. Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69, 1562–1566. https://doi.org/10.1016/J.JBUSRES.2015.10.017.

    Article  Google Scholar 

  19. Syncsort. (2017). The new rules for your data landscape. e-book. https://www.syncsort.com/en/Resource-Center/BigData/eBooks/The-New-Rules-for-Your-Data-Landscape. Accessed 6 April 2019.

  20. Raguseo, E., & Vitari, C. (2018). Investments in big data analytics and firm performance: An empirical investigation of direct and mediating effects. International Journal of Production Research, 56, 5206–5221. https://doi.org/10.1080/00207543.2018.1427900.

    Article  Google Scholar 

  21. Haddad, J. (2014). How to construct a big data strategy. Techradar. pro, 14.

    Google Scholar 

  22. Lusch, R. F., & Nambisan, S. (2015). Service innovation: A service-dominant logic perspective. MIS Quarterly, 39, 155–175. https://doi.org/10.25300/MISQ/2015/39.1.07.

    Article  Google Scholar 

  23. Häikiö, J., & Koivumäki, T. (2016). Exploring digital service innovation process through value creation. Journal of Innovation Management, 4, 96–124. https://doi.org/10.24840/2183-0606_004.002_0006.

    Article  Google Scholar 

  24. Serrat, O. (2017). Harnessing creativity and innovation in the workplace. In Knowledge solutions (pp. 903–910). Berlin: Springer.

    Chapter  Google Scholar 

  25. Dinov, I. D. (2016). Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data. Gigascience, 5, 12. https://doi.org/10.1186/s13742-016-0117-6.

    Article  Google Scholar 

  26. Wang, Y., Kung, L., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information & Management, 55, 64–79. https://doi.org/10.1016/J.IM.2017.04.001.

    Article  Google Scholar 

  27. Kennedy, M., Harmon, K., & Minnock, E. (2008). Ready, set, dominate: Implement Toyota’s set-based learning for developing products and nobody can catch you. Richmond, VA: The Oaklea Press.

    Google Scholar 

  28. Schuh, G., Lenders, M., & Hieber, S. (2008). Lean innovation: Introducing value systems to product development. In Portland International Conference on Management of Engineering and Technology, PICMET ‘08, Piscataway, USA.

    Google Scholar 

  29. Hoppmann, J. (2009). The lean innovation roadmap—A systematic approach to introducing lean in product development processes and establishing a learning organization. Technical University of Braunschweig.

    Google Scholar 

  30. Wang, L., Ming, X. G., Kong, F. B., et al. (2011). Focus on implementation: A framework for lean product development. Journal of Manufacturing Technology Management, 23, 4–24. https://doi.org/10.1108/17410381211196267.

    Article  Google Scholar 

  31. Ward, A. C., & Sobek, D. K., II. (2014). Lean product and process development (2nd ed.). Cambridge, MA: Lean Enterprise Institute.

    Google Scholar 

  32. Lemieux, A.-A., Lamouri, S., Pellerin, R., & Tamayo, S. (2015). Development of a leagile transformation methodology for product development. Business Process Management Journal, 21, 791–819. https://doi.org/10.1108/BPMJ-02-2014-0009.

    Article  Google Scholar 

  33. Mach-Król, M. (2019). Requirements for the temporal BDA implementation methodology in organizations. Inform Ekon 1 (in print).

    Google Scholar 

  34. Zafar, I., Nazir, A. K., & Abbas, M. (2017). The impact of agile methodology (DSDM) on software project management. In Circulation in Computer Science: International Conference on Engineering, Computing and Information Technology (ICECIT 2017) (pp. 1–6).

    Google Scholar 

  35. Halper, F., & Stodder, D. (2014). TDWI analytics maturity model guide. TDWI Research, 1–20.

    Google Scholar 

  36. Flores, M., Maklin, D., Ingram, B., et al. (2018). Towards a sustainable innovation process: Integrating lean and sustainability principles (pp. 34–42). Cham: Springer.

    Google Scholar 

  37. Ghezzi, A., & Cavallo, A. (2018). Agile business model innovation in digital entrepreneurship: Lean startup approaches. Journal of Business Research. https://doi.org/10.1016/J.JBUSRES.2018.06.013.

    Article  Google Scholar 

  38. Fecher, F., Winding, J., Hutter, K., & Füller, J. (2018). Innovation labs from a participants’ perspective. Journal of Business Research. https://doi.org/10.1016/J.JBUSRES.2018.05.039.

    Article  Google Scholar 

  39. Agarwal, A., Shankar, R., & Tiwari, M. K. (2006). Modeling the metrics of lean, agile and leagile supply chain: An ANP-based approach. European Journal of Operational Research, 173, 211–225. https://doi.org/10.1016/J.EJOR.2004.12.005.

    Article  MathSciNet  MATH  Google Scholar 

  40. Casner, D., Souili, A., Houssin, R., & Renaud, J. (2018). Agile’TRIZ framework: Towards the integration of TRIZ within the agile innovation methodology (pp. 84–93). Cham: Springer.

    Google Scholar 

  41. Jyothi, V. E., & Rao, K. N. (2012). Effective implementation of agile practices—incoordination with lean Kanban. International Journal of Computational Science and Engineering, 4, 87.

    Google Scholar 

  42. Rodríguez, P., Mäntylä, M., Oivo, M., et al. (2019). Advances in using agile and lean processes for software development. Advances in Computer, 113, 135–224. https://doi.org/10.1016/BS.ADCOM.2018.03.014.

    Article  Google Scholar 

  43. Voigt, B. J. J. (2004). Dynamic system development method. Zurich.

    Google Scholar 

  44. Slegten, K. (2016). Dynamic systems development method (DSDM). Utrecht.

    Google Scholar 

  45. Craddock, A., Roberts, B., Richards, K. et al. (2012). The DSDM agile project framework for Scrum.

    Google Scholar 

  46. Medel-González, F., García-Ávila, L., Acosta-Beltrán, A., & Hernández, C. (2013). Measuring and evaluating business sustainability: Development and application of corporate index of sustainability performance. Sustainability appraisal: Quantitative methods and mathematical techniques for environmental performance evaluation (pp. 33–61). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  47. Rajaraman, V. (2016). Big data analytics. Resonance, 21, 695–716. https://doi.org/10.1007/s12045-016-0376-7.

    Article  Google Scholar 

  48. Syncsort. (2018). 2018 Big data trends: Liberate, integrate and trust. In Syncsort Resource Center. https://www.syncsort.com/en/resource-center/data-integration/ebooks/2018-big-data-trends-liberate-integrate-trust. Accessed 2 July 2019.

  49. Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79, 1–14.

    Article  Google Scholar 

  50. Wamba, S. F., Gunasekaran, A., Akter, S., et al. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/J.JBUSRES.2016.08.009.

    Article  Google Scholar 

  51. TDWI. (2013). TDWI launches big data maturity model assessment tool|transforming data with intelligence. In Transforming data with intelligence. https://tdwi.org/articles/2013/11/20/tdwi-launches-big-data-maturity-model-assessment-tool.aspx. Accessed 2 July 2019.

  52. Nott, C. (2014). Big data analytics maturity model. In Big data analytics. https://www.ibm.com/developerworks/community/blogs/bigdataanalytics/entry/big_data_analytics_maturity_model?lang=en. Accessed 2 July 2019.

  53. Nott, C. (2016). Big data analytics maturity model. http://www.ibmbigdatahub.com/blog/big-data-analytics-maturity-model. Accessed 15 April 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mach-Król .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mach-Król, M. (2020). Conceptual Foundations for the Temporal Big Data Analytics (TBDA) Implementation Methodology in Organizations. In: Hernes, M., Rot, A., Jelonek, D. (eds) Towards Industry 4.0 — Current Challenges in Information Systems. Studies in Computational Intelligence, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-030-40417-8_14

Download citation

Publish with us

Policies and ethics