Skip to main content

Noise-Induced Hearing Loss and Drug Therapy: Basic and Translational Science

  • Chapter
  • First Online:
New Therapies to Prevent or Cure Auditory Disorders

Abstract

Noise-induced hearing loss is the second leading cause of hearing impairment. The purpose of this chapter is to familiarize the reader with the anatomical, physiological, and perceptual consequences of noise trauma, as well as emerging treatments to attenuate these effects. The relationship between anatomical damage and functional deficits is complex and highly dependent on the type of noise, duration of the noise exposure, and the metric used to assess deficits. Recent studies have now identified potential early subclinical markers of noise-induced trauma that open opportunities for early identification and treatment. The chapter includes discussion of the current state of these findings, their limitations, and avenues for further research. Finally, the chapter reviews current pharmacological interventions, their targeted pathways, and mechanisms of action that may hold promise for future treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M (2005) The global burden of occupational noise-induced hearing loss. Am J Ind Med 48(6):446–458. https://doi.org/10.1002/ajim.20223

    Article  PubMed  Google Scholar 

  2. Henderson E, Testa MA, Hartnick C (2011) Prevalence of noise-induced hearing-threshold shifts and hearing loss among US youths. Pediatrics 127(1):e39–e46. https://doi.org/10.1542/peds.2010-0926

    Article  PubMed  Google Scholar 

  3. Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9(2):178–190. https://doi.org/10.1007/s10162-008-0118-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2):46–53. https://doi.org/10.1016/j.heares.2007.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Owens KN, Coffin AB, Hong LS, Bennett KO, Rubel EW, Raible DW (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 253(1–2):32–41. https://doi.org/10.1016/j.heares.2009.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding D, He J, Allman BL, Yu D, Jiang H, Seigel GM, Salvi RJ (2011) Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res 282(1–2):196–203. https://doi.org/10.1016/j.heares.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  8. Feghali JG, Liu W, Van De Water TR (2001) L-n-acetyl-cysteine protection against cisplatin-induced auditory neuronal and hair cell toxicity. Laryngoscope 111(7):1147–1155. https://doi.org/10.1097/00005537-200107000-00005

    Article  CAS  PubMed  Google Scholar 

  9. Staecker H, Liu W, Malgrange B, Lefebvre PP, Van De Water TR (2007) Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury. ORL J Otorhinolaryngol Relat Spec 69(1):43–50. https://doi.org/10.1159/000096716

    Article  CAS  PubMed  Google Scholar 

  10. Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19. https://doi.org/10.1097/01.aud.0000191942.36672.f3

    Article  PubMed  Google Scholar 

  11. Ohlemiller KK, Rice ME, Gagnon PM (2008) Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice. Hear Res 244(1–2):85–97. https://doi.org/10.1016/j.heares.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3(3):248–268. https://doi.org/10.1007/s101620020028

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harding GW, Bohne BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174(1–2):158–171

    Article  PubMed  Google Scholar 

  14. Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139(1–2):13–30

    Article  CAS  PubMed  Google Scholar 

  15. Santi PA, Duvall AJ 3rd. (1978) Stria vascularis pathology and recovery following noise exposure. Otolaryngology 86(2):ORL354–ORL361

    Article  CAS  PubMed  Google Scholar 

  16. Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  17. Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4(5):229–236. https://doi.org/10.1159/000013846

    Article  CAS  PubMed  Google Scholar 

  18. Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A (1995) Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol 252(8):504–508

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019(1–2):201–209. https://doi.org/10.1016/j.brainres.2004.05.104

    Article  CAS  PubMed  Google Scholar 

  20. Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport 9(9):2109–2114

    Article  CAS  PubMed  Google Scholar 

  21. Hu BH, Guo W, Wang PY, Henderson D, Jiang SC (2000) Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Otolaryngol 120(1):19–24

    Article  CAS  PubMed  Google Scholar 

  22. Lefebvre PP, Malgrange B, Lallemend F, Staecker H, Moonen G, Van De Water TR (2002) Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol 7(3):165–170. https://doi.org/10.1159/000058304

    Article  CAS  PubMed  Google Scholar 

  23. Nakagawa T, Yamane H, Shibata S, Takayama M, Sunami K, Nakai Y (1997) Two modes of auditory hair cell loss following acoustic overstimulation in the avian inner ear. ORL J Otorhinolaryngol Relat Spec 59(6):303–310. https://doi.org/10.1159/000276961

    Article  CAS  PubMed  Google Scholar 

  24. Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4(4):466–477. https://doi.org/10.1007/s10162-002-3038-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Le Prell CG, Hughes LF, Miller JM (2007) Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 42(9):1454–1463. https://doi.org/10.1016/j.freeradbiomed.2007.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM (2007) Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 226(1–2):22–43. https://doi.org/10.1016/j.heares.2006.10.006

    Article  PubMed  Google Scholar 

  27. Chen YS, Tseng FY, Liu TC, Lin-Shiau SY, Hsu CJ (2005) Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs. Hear Res 203(1–2):94–100. https://doi.org/10.1016/j.heares.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  28. Diao M, Gao W, Sun J (2007) Nitric oxide synthase inhibitor reduces noise-induced cochlear damage in guinea pigs. Acta Otolaryngol 127(11):1162–1167. https://doi.org/10.1080/00016480701242436

    Article  CAS  PubMed  Google Scholar 

  29. Bielefeld EC (2013) Reduction in impulse noise-induced permanent threshold shift with intracochlear application of an NADPH oxidase inhibitor. J Am Acad Audiol 24(6):461–473. https://doi.org/10.3766/jaaa.24.6.3

    Article  PubMed  Google Scholar 

  30. Bielefeld EC, Hu BH, Harris KC, Henderson D (2005) Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res 207(1–2):35–42. https://doi.org/10.1016/j.heares.2005.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP (2004) Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res 188(1–2):47–56. https://doi.org/10.1016/S0378-5955(03)00344-7

    Article  CAS  PubMed  Google Scholar 

  32. Bottger EC, Schacht J (2013) The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 303:12–19. https://doi.org/10.1016/j.heares.2013.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller JM, Dengerink H (1988) Control of inner ear blood flow. Am J Otolaryngol 9(6):302–316

    Article  CAS  PubMed  Google Scholar 

  34. Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64(2):199–204

    Article  CAS  PubMed  Google Scholar 

  35. Ren TY, Laurikainen E, Quirk WS, Miller JM, Nuttall AL (1993) Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. Acta Otolaryngol 113(2):146–151

    Article  CAS  PubMed  Google Scholar 

  36. Bielefeld EC, Henderson D (2007) Influence of sympathetic fibers on noise-induced hearing loss in the chinchilla. Hear Res 223(1–2):11–19. https://doi.org/10.1016/j.heares.2006.09.010

    Article  PubMed  Google Scholar 

  37. Borg E (1982) Susceptibility of the sympathectomized ear to noise-induced hearing loss. Acta Physiol Scand 114(3):387–391. https://doi.org/10.1111/j.1748-1716.1982.tb06999.x

    Article  CAS  PubMed  Google Scholar 

  38. Giraudet F, Horner KC, Cazals Y (2002) Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Hear Res 174(1–2):239–248

    Article  CAS  PubMed  Google Scholar 

  39. Hildesheimer M, Henkin Y, Pye A, Heled S, Sahartov E, Shabtai EL, Muchnik C (2002) Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hear Res 163(1–2):46–52

    Article  PubMed  Google Scholar 

  40. Hildesheimer M, Sharon R, Muchnik C, Sahartov E, Rubinstein M (1991) The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hear Res 51(1):49–53

    Article  CAS  PubMed  Google Scholar 

  41. Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 141(1–2):199–219

    Article  CAS  PubMed  Google Scholar 

  42. Miller JM, Brown JN, Schacht J (2003) 8-Iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8(4):207–221. https://doi.org/10.1159/000071061

    Article  CAS  PubMed  Google Scholar 

  43. Perlman HB, Kimura R (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngol 54:99–110

    Article  CAS  PubMed  Google Scholar 

  44. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sokolova IM, Evans S, Hughes FM (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. J Exp Biol 207(Pt 19):3369–3380. https://doi.org/10.1242/jeb.01152

    Article  CAS  PubMed  Google Scholar 

  46. Hu BH, Zheng GL (2008) Membrane disruption: an early event of hair cell apoptosis induced by exposure to intense noise. Brain Res 1239:107–118. https://doi.org/10.1016/j.brainres.2008.08.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van De Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J et al (2004) Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol 25(4):627–632

    Article  Google Scholar 

  48. Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166(1–2):62–71

    Article  PubMed  Google Scholar 

  49. Hu BH, Henderson D, Nicotera TM (2006) Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hear Res 211(1–2):16–25. https://doi.org/10.1016/j.heares.2005.08.006

    Article  PubMed  Google Scholar 

  50. Slepecky N, Hamernik R, Henderson D, Coling D (1981) Ultrastructural changes to the cochlea resulting from impulse noise. Arch Otorhinolaryngol 230(3):273–278

    Article  CAS  PubMed  Google Scholar 

  51. Ahmad M, Bohne BA, Harding GW (2003) An in vivo tracer study of noise-induced damage to the reticular lamina. Hear Res 175(1–2):82–100

    Article  PubMed  Google Scholar 

  52. Salvi RJ, Hamernik RP, Henderson D (1979) Auditory nerve activity and cochlear morphology after noise exposure. Arch Otorhinolaryngol 224(1–2):111–116

    Article  CAS  PubMed  Google Scholar 

  53. Henderson D, Salvi R, Pavek G, Hamernik R (1984) Amplitude modulation thresholds in chinchillas with high-frequency hearing loss. J Acoust Soc Am 75(4):1177–1183

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez KA, Jeffers PW, Lall K, Liberman MC, Kujawa SG (2015) Aging after noise exposure: acceleration of cochlear synaptopathy in “recovered”ears. J Neurosci 35(19):7509–7520. https://doi.org/10.1523/JNEUROSCI.5138-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    Article  CAS  PubMed  Google Scholar 

  57. Robertson D (1983) Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear Res 9(3):263–278

    Article  CAS  PubMed  Google Scholar 

  58. Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110(3):577–586. https://doi.org/10.1152/jn.00164.2013

    Article  PubMed  PubMed Central  Google Scholar 

  59. Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717. https://doi.org/10.1007/s10162-011-0283-2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Viana LM, O’Malley JT, Burgess BJ, Jones DD, Oliveira CA, Santos F et al (2015) Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. https://doi.org/10.1016/j.heares.2015.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330(Pt B):191–199. https://doi.org/10.1016/j.heares.2015.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  62. Parthasarathy A, Kujawa SG (2018) Synaptopathy in the aging cochlea: characterizing early-neural deficits in auditory temporal envelope processing. J Neurosci 38(32):7108–7119. https://doi.org/10.1523/JNEUROSCI.3240-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33(34):13686–13694. https://doi.org/10.1523/JNEUROSCI.1783-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol. 112(5):1025–1039. https://doi.org/10.1152/jn.00738.2013

  65. Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):605–616. https://doi.org/10.1007/s10162-011-0277-0

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gleich O, Semmler P, Strutz J (2016) Behavioral auditory thresholds and loss of ribbon synapses at inner hair cells in aged gerbils. Exp Gerontol 84:61–70. https://doi.org/10.1016/j.exger.2016.08.011

    Article  PubMed  Google Scholar 

  67. Mohrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U et al (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184. https://doi.org/10.1016/j.neurobiolaging.2016.05.001

    Article  PubMed  Google Scholar 

  68. Hickman TT, Smalt C, Bobrow J, Quatieri T, Liberman MC (2018) Blast-induced cochlear synaptopathy in chinchillas. Sci Rep 8(1):10740. https://doi.org/10.1038/s41598-018-28924-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC (2017) Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353:213–223. https://doi.org/10.1016/j.heares.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lobarinas E, Spankovich C, Le Prell CG (2017) Evidence of “hidden hearing loss” following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hear Res 349:155–163. https://doi.org/10.1016/j.heares.2016.12.009

    Article  PubMed  Google Scholar 

  71. Forster J, Wendler O, Buchheidt-Doerfler I, Krauss P, Schilling A, Sterna E, Schulze H, Tziridis K (2018) Tinnitus development is associated with synaptopathy of inner hair cells in Mongolian gerbils. Preprint. https://doi.org/10.1101/304576

  72. Pienkowski M (2018) Prolonged exposure of CBA/Ca mice to moderately loud noise can cause cochlear synaptopathy but not tinnitus or hyperacusis as assessed with the acoustic startle reflex. Trends Hear 22:2331216518758109. https://doi.org/10.1177/2331216518758109

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peters EN (1965) Temporary shifts in auditory thresholds of chinchilla after exposure to noise. J Acoust Soc Am 37:831–833

    Article  CAS  PubMed  Google Scholar 

  74. Hamernik RP, Ahroon WA, Patterson JH Jr, Qiu W (2002) Relations among early postexposure noise-induced threshold shifts and permanent threshold shifts in the chinchilla. J Acoust Soc Am 111(1 Pt 1):320–326

    Article  PubMed  Google Scholar 

  75. Henderson D, Hamernik RP, Sitler RW (1974) Audiometric and histological correlates of exposure to 1-msec noise impulses in the chinchilla. J Acoust Soc Am 56(4):1210–1221

    Article  CAS  PubMed  Google Scholar 

  76. Mills JH (1973) Temporary and permanent threshold shifts produced by nine-day exposures to noise. J Speech Hear Res 16(3):426–438

    Article  CAS  PubMed  Google Scholar 

  77. Saunders JC, Mills JH, Miller JD (1977) Threshold shift in the chinchilla from daily exposure to noise for six hours. J Acoust Soc Am 61(2):558–570

    Article  CAS  PubMed  Google Scholar 

  78. Ryan A, Bone RC (1978) Noise-induced threshold shift and cochlear pathology in the Mongolian gerbil. J Acoust Soc Am 63(4):1145–1151

    Article  CAS  PubMed  Google Scholar 

  79. Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275. https://doi.org/10.1097/MAO.0000000000001071

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rosowski JJ (1991) The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90(1):124–135

    Article  CAS  PubMed  Google Scholar 

  81. Clark WW, Bohne BA (1978) Animal model for the 4-kHz tonal dip. Ann Otol Rhinol Laryngol Suppl 87(4 Pt 2 Suppl 51):1–16

    CAS  PubMed  Google Scholar 

  82. Lie A, Engdahl B, Hoffman HJ, Li CM, Tambs K (2017) Occupational noise exposure, hearing loss, and notched audiograms in the HUNT Nord-Trondelag hearing loss study, 1996-1998. Laryngoscope 127(6):1442–1450. https://doi.org/10.1002/lary.26256

    Article  PubMed  Google Scholar 

  83. Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38(3):199–211

    Article  CAS  PubMed  Google Scholar 

  84. Somma G, Pietroiusti A, Magrini A, Coppeta L, Ancona C, Gardi S et al (2008) Extended high-frequency audiometry and noise induced hearing loss in cement workers. Am J Ind Med 51(6):452–462. https://doi.org/10.1002/ajim.20580

    Article  PubMed  Google Scholar 

  85. Riga M, Korres G, Balatsouras D, Korres S (2010) Screening protocols for the prevention of occupational noise-induced hearing loss: the role of conventional and extended high frequency audiometry may vary according to the years of employment. Med Sci Monit 16(7):CR352–CR356

    Article  PubMed  Google Scholar 

  86. Ahmed HO, Dennis JH, Badran O, Ismail M, Ballal SG, Ashoor A, Jerwood D (2001) High-frequency (10-18 kHz) hearing thresholds: reliability, and effects of age and occupational noise exposure. Occup Med (Lond) 51(4):245–258

    Article  CAS  Google Scholar 

  87. Borchgrevink HM, Hallmo P, Mair IWS (1996) Extended highfrequency hearing loss from noise exposure. In: Axelsson A, Borchgrevink HM, Hamernik RP, Hellstrom PA, Henderson D, Salvi RJ (eds), Scientific basis of noise-induced hearing loss. Thieme, Leipzig, Germany. pp 299–312

    Google Scholar 

  88. Le Prell CG, Bao J (2012) Prevention of noise-induced hearing loss: potential therapeutic agents. In: Le Prell HD, CG FRR, Popper AN (eds) Noise-induced hearing loss: scientific advances, Springer handbook of auditory research. Springer Science+Business Media, LLC, New York, pp 285–338

    Chapter  Google Scholar 

  89. Le Prell CG, Lobarinas E (2015) Strategies for assessing antioxidant efficacy in clinical trials. In: Miller JM, Le Prell CG, Rybak L (eds) Oxidative stress in applied basic research and clinical practice: free radicals in ENT pathology. Humana Press, New York, pp 163–192

    Google Scholar 

  90. Stamper GC, Johnson TA (2015) Auditory function in normal-hearing, noise-exposed human ears. Ear Hear 36(2):172–184. https://doi.org/10.1097/AUD.0000000000000107

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stamper GC, Johnson TA (2015) Letter to the Editor: Examination of potential sex influences in auditory function in normal-hearing, noise-exposed human ears, Ear Hear 36, 172–184. Ear Hear 36(6):738–740. https://doi.org/10.1097/AUD.0000000000000228

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fulbright ANC, Le Prell CG, Griffiths SK, Lobarinas E (2017) Effects of recreational noise on threshold and suprathreshold measures of auditory function. Semin Hear 38(4):298–318. https://doi.org/10.1055/s-0037-1606325

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grinn SK, Wiseman KB, Baker JA, Le Prell CG (2017) Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Front Neurosci 11:465. https://doi.org/10.3389/fnins.2017.00465

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 11(9):e0162726. https://doi.org/10.1371/journal.pone.0162726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Valderrama JT, Beach EF, Yeend I, Sharma M, Van Dun B, Dillon H (2018) Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear Res 365:36–48. https://doi.org/10.1016/j.heares.2018.06.003

    Article  PubMed  Google Scholar 

  96. Bramhall NF, Konrad-Martin D, McMillan GP, Griest SE (2017) Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function. Ear Hear 38(1):e1–e12. https://doi.org/10.1097/AUD.0000000000000370

    Article  PubMed  PubMed Central  Google Scholar 

  97. Prendergast G, Guest H, Munro KJ, Kluk K, Leger A, Hall DA et al (2017) Effects of noise exposure on young adults with normal audiograms I: electrophysiology. Hear Res 344:68–81. https://doi.org/10.1016/j.heares.2016.10.028

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ (2017) Tinnitus with a normal audiogram: relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res 344:265–274. https://doi.org/10.1016/j.heares.2016.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  99. Musiek FE, Kibbe K, Rackliffe L, Weider DJ (1984) The auditory brain stem response I-V amplitude ratio in normal, cochlear, and retrocochlear ears. Ear Hear 5(1):52–55

    Article  CAS  PubMed  Google Scholar 

  100. Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, Shinn-Cunningham BG (2016) Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci 36(13):3755–3764. https://doi.org/10.1523/JNEUROSCI.4460-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lobarinas E, Salvi R, Ding D (2016) Selective inner hair cell dysfunction in chinchillas impairs hearing-in-noise in the absence of outer hair cell loss. J Assoc Res Otolaryngol 17(2):89–101. https://doi.org/10.1007/s10162-015-0550-8

    Article  PubMed  Google Scholar 

  102. Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(3):552–564. https://doi.org/10.1152/jn.00184.2013

    Article  PubMed  Google Scholar 

  103. Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM (2015) Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 10(5):e0125160. https://doi.org/10.1371/journal.pone.0125160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barbee CM, James JA, Park JH, Smith EM, Johnson CE, Clifton S, Danhauer JL (2018) Effectiveness of auditory measures for detecting hidden hearing loss and/or cochlear synaptopathy: a systematic review. Semin Hear 39(2):172–209. https://doi.org/10.1055/s-0038-1641743

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen GD (2018) Hidden cochlear impairments. J Otol 13(2):37–43. https://doi.org/10.1016/j.joto.2018.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kobel M, Le Prell CG, Liu J, Hawks JW, Bao J (2017) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res 349:148–154. https://doi.org/10.1016/j.heares.2016.12.008

    Article  PubMed  Google Scholar 

  107. Shi L, Chang Y, Li X, Aiken S, Liu L, Wang J (2016) Cochlear synaptopathy and noise-induced hidden hearing loss. Neural Plast 2016:6143164. https://doi.org/10.1155/2016/6143164

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stone MA, Moore BC (2008) Effects of spectro-temporal modulation changes produced by multi-channel compression on intelligibility in a competing-speech task. J Acoust Soc Am 123(2):1063–1076. https://doi.org/10.1121/1.2821969

  109. Hope AJ, Luxon LM, Bamiou DE (2013) Effects of chronic noise exposure on speech-in-noise perception in the presence of normal audiometry. J Laryngol Otol 127(3):233–238. https://doi.org/10.1017/S002221511200299X

    Article  CAS  PubMed  Google Scholar 

  110. Suting BM (2016) Assessing the knowledge regarding environmental sanitation and its impact on health among the people in a selected rural community of Meghalaya. Nurs J India 107(4):153–155

    PubMed  Google Scholar 

  111. Kujala T, Shtyrov Y, Winkler I, Saher M, Tervaniemi M, Sallinen M et al (2004) Long-term exposure to noise impairs cortical sound processing and attention control. Psychophysiology 41(6):875–881. https://doi.org/10.1111/j.1469-8986.2004.00244.x

    Article  PubMed  Google Scholar 

  112. Wilson RH (2011) Clinical experience with the words-in-noise test on 3430 veterans: comparisons with pure-tone thresholds and word recognition in quiet. J Am Acad Audiol 22(7):405–423. https://doi.org/10.3766/jaaa.22.7.3

    Article  PubMed  Google Scholar 

  113. Le Prell CG, Lobarinas E (2016) Clinical and translational research: challenges to the field. In: Le Prell CG, Lobarinas E, Popper AN, Fay RR (eds) Translational research in audiology and the hearing sciences, Springer handbook of auditory research. Springer, New York, pp 241–265

    Google Scholar 

  114. Plomp R (1986) A signal-to-noise ratio model for the speech-reception threshold of the hearing impaired. J Speech Hear Res 29(2):146–154

    Article  CAS  PubMed  Google Scholar 

  115. Wilson RH, McArdle R (2007) Intra- and inter-session test, retest reliability of the Words-in-Noise (WIN) test. J Am Acad Audiol 18(10):813–825

    Article  PubMed  Google Scholar 

  116. Wilson RH, McArdle RA, Smith SL (2007) An evaluation of the BKB-SIN, HINT, QuickSIN, and WIN materials on listeners with normal hearing and listeners with hearing loss. J Speech Lang Hear Res 50(4):844–856. https://doi.org/10.1044/1092-4388(2007/059)

    Article  PubMed  Google Scholar 

  117. Maggirwar SB, Dhanraj DN, Somani SM, Ramkumar V (1994) Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Commun 201(2):508–515. https://doi.org/10.1006/bbrc.1994.1731

    Article  CAS  PubMed  Google Scholar 

  118. Hu BH, Zheng XY, McFadden SL, Kopke RD, Henderson D (1997) R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear Res 113(1–2):198–206

    Article  CAS  PubMed  Google Scholar 

  119. Hight NG, McFadden SL, Henderson D, Burkard RF, Nicotera T (2003) Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear Res 179(1–2):21–32

    Article  CAS  PubMed  Google Scholar 

  120. Samson J, Wiktorek-Smagur A, Politanski P, Rajkowska E, Pawlaczyk-Luszczynska M, Dudarewicz A et al (2008) Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine. Neuroscience 152(1):146–150. https://doi.org/10.1016/j.neuroscience.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  121. Kopke RD, Coleman JK, Liu J, Campbell KC, Riffenburgh RH (2002) Candidate’s thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope 112(9):1515–1532. https://doi.org/10.1097/00005537-200209000-00001

    Article  CAS  PubMed  Google Scholar 

  122. Campbell KC, Meech RP, Klemens JJ, Gerberi MT, Dyrstad SS, Larsen DL et al (2007) Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res 226(1–2):92–103. https://doi.org/10.1016/j.heares.2006.11.012

    Article  CAS  PubMed  Google Scholar 

  123. Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L (2011) D-methionine (D-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res 282(1–2):138–144. https://doi.org/10.1016/j.heares.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  124. Lo WC, Liao LJ, Wang CT, Young YH, Chang YL, Cheng PW (2013) Dose-dependent effects of D-methionine for rescuing noise-induced permanent threshold shift in guinea-pigs. Neuroscience 254:222–229. https://doi.org/10.1016/j.neuroscience.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  125. Eastwood H, Pinder D, James D, Chang A, Galloway S, Richardson R, O’Leary S (2010) Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation. Hear Res 259(1–2):24–30. https://doi.org/10.1016/j.heares.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  126. Zou J, Bretlau P, Pyykko I, Toppila E, Olovius NP, Stephanson N et al (2003) Comparison of the protective efficacy of neurotrophins and antioxidants for vibration-induced trauma. ORL J Otorhinolaryngol Relat Spec 65(3):155–161. https://doi.org/10.1159/000072253

    Article  CAS  PubMed  Google Scholar 

  127. Kopke RD, Weisskopf PA, Boone JL, Jackson RL, Wester DC, Hoffer ME et al (2000) Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res 149(1–2):138–146

    Article  CAS  PubMed  Google Scholar 

  128. Bielefeld EC, Kopke RD, Jackson RL, Coleman JK, Liu J, Henderson D (2007) Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration. Acta Otolaryngol 127(9):914–919. https://doi.org/10.1080/00016480601110188

    Article  CAS  PubMed  Google Scholar 

  129. Duan M, Qiu J, Laurell G, Olofsson A, Counter SA, Borg E (2004) Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma. Hear Res 192(1–2):1–9. https://doi.org/10.1016/j.heares.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  130. Kopke R, Bielefeld E, Liu J, Zheng J, Jackson R, Henderson D, Coleman JK (2005) Prevention of impulse noise-induced hearing loss with antioxidants. Acta Otolaryngol 125(3):235–243

    Article  CAS  PubMed  Google Scholar 

  131. Choi CH, Du X, Floyd RA, Kopke RD (2014) Therapeutic effects of orally administrated antioxidant drugs on acute noise-induced hearing loss. Free Radic Res 48(3):264–272. https://doi.org/10.3109/10715762.2013.861599

    Article  CAS  PubMed  Google Scholar 

  132. Clifford RE, Coleman JK, Balough BJ, Liu J, Kopke RD, Jackson RL (2011) Low-dose D-methionine and N-acetyl-L-cysteine for protection from permanent noise-induced hearing loss in chinchillas. Otolaryngol Head Neck Surg 145(6):999–1006. https://doi.org/10.1177/0194599811414496

    Article  PubMed  Google Scholar 

  133. Hamernik RP, Qiu W, Davis B (2008) The effectiveness of N-acetyl-L-cysteine (L-NAC) in the prevention of severe noise-induced hearing loss. Hear Res 239(1–2):99–106. https://doi.org/10.1016/j.heares.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  134. Lin CY, Wu JL, Shih TS, Tsai PJ, Sun YM, Ma MC, Guo YL (2010) N-acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear Res 269(1–2):42–47. https://doi.org/10.1016/j.heares.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  135. Lindblad AC, Rosenhall U, Olofsson A, Hagerman B (2011) The efficacy of N-acetylcysteine to protect the human cochlea from subclinical hearing loss caused by impulse noise: a controlled trial. Noise Health 13(55):392–401. https://doi.org/10.4103/1463-1741.90293

    Article  PubMed  Google Scholar 

  136. Doosti A, Lotfi Y, Moossavi A, Bakhshi E, Talasaz AH, Hoorzad A (2014) Comparison of the effects of N-acetyl-cysteine and ginseng in prevention of noise induced hearing loss in male textile workers. Noise Health 16(71):223–227. https://doi.org/10.4103/1463-1741.137057

    Article  PubMed  Google Scholar 

  137. Kopke R, Slade MD, Jackson R, Hammill T, Fausti S, Lonsbury-Martin B et al (2015) Efficacy and safety of N-acetylcysteine in prevention of noise induced hearing loss: a randomized clinical trial. Hear Res 323:40–50. https://doi.org/10.1016/j.heares.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  138. Kil J, Pierce C, Tran H, Gu R, Lynch ED (2007) Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res 226(1–2):44–51. https://doi.org/10.1016/j.heares.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  139. Pourbakht A, Yamasoba T (2003) Ebselen attenuates cochlear damage caused by acoustic trauma. Hear Res 181(1–2):100–108

    Article  CAS  PubMed  Google Scholar 

  140. Lynch ED, Gu R, Pierce C, Kil J (2004) Ebselen-mediated protection from single and repeated noise exposure in rat. Laryngoscope 114(2):333–337. https://doi.org/10.1097/00005537-200402000-00029

    Article  PubMed  Google Scholar 

  141. Yamasoba T, Pourbakht A, Sakamoto T, Suzuki M (2005) Ebselen prevents noise-induced excitotoxicity and temporary threshold shift. Neurosci Lett 380(3):234–238. https://doi.org/10.1016/j.neulet.2005.01.047

    Article  CAS  PubMed  Google Scholar 

  142. Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, Le Prell CG (2017) Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 390(10098):969–979. https://doi.org/10.1016/S0140-6736(17)31791-9

    Article  CAS  PubMed  Google Scholar 

  143. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43(1):4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM (2005) Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience 134(2):633–642. https://doi.org/10.1016/j.neuroscience.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  145. Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK (2011) Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 158(1):38–53. https://doi.org/10.1016/j.trsl.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen L, Dean C, Gandolfi M, Nahm E, Mattiace L, Kim AH (2014) Dexamethasone’s effect in the retrocochlear auditory centers of a noise-induced hearing loss mouse model. Otolaryngol Head Neck Surg 151(4):667–674. https://doi.org/10.1177/0194599814545771

    Article  PubMed  Google Scholar 

  147. Tabuchi K, Murashita H, Tobita T, Oikawa K, Tsuji S, Uemaetomari I, Hara A (2005) Dehydroepiandrosterone sulfate reduces acoustic injury of the guinea-pig cochlea. J Pharmacol Sci 99(2):191–194

    Article  CAS  PubMed  Google Scholar 

  148. Takemura K, Komeda M, Yagi M, Himeno C, Izumikawa M, Doi T et al (2004) Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196(1–2):58–68. https://doi.org/10.1016/j.heares.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  149. Han MA, Back SA, Kim HL, Park SY, Yeo SW, Park SN (2015) Therapeutic effect of dexamethasone for noise-induced hearing loss: systemic versus intratympanic injection in mice. Otol Neurotol 36(5):755–762. https://doi.org/10.1097/MAO.0000000000000759

    Article  PubMed  Google Scholar 

  150. Tabuchi K, Murashita H, Sakai S, Hoshino T, Uemaetomari I, Hara A (2006) Therapeutic time window of methylprednisolone in acoustic injury. Otol Neurotol 27(8):1176–1179. https://doi.org/10.1097/01.mao.0000226313.82069.3f

    Article  PubMed  Google Scholar 

  151. Bas E, Martinez-Soriano F, Lainez JM, Marco J (2009) An experimental comparative study of dexamethasone, melatonin and tacrolimus in noise-induced hearing loss. Acta Otolaryngol 129(4):385–389. https://doi.org/10.1080/00016480802566279

    Article  CAS  PubMed  Google Scholar 

  152. Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R et al (2000) Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 49(11):1924–1931

    Article  CAS  PubMed  Google Scholar 

  153. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J (1998) Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci U S A 95(4):1852–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Morin C, Zini R, Simon N, Tillement JP (2002) Dehydroepiandrosterone and alpha-estradiol limit the functional alterations of rat brain mitochondria submitted to different experimental stresses. Neuroscience 115(2):415–424. https://doi.org/10.1016/s0306-4522(02)00416-5

    Article  CAS  PubMed  Google Scholar 

  155. Psillas G, Pavlidis P, Karvelis I, Kekes G, Vital V, Constantinidis J (2008) Potential efficacy of early treatment of acute acoustic trauma with steroids and piracetam after gunshot noise. Eur Arch Otorhinolaryngol 265(12):1465–1469. https://doi.org/10.1007/s00405-008-0689-6

    Article  PubMed  Google Scholar 

  156. Harada H, Shiraishi K, Kato T (2001) Prognosis of acute acoustic trauma: a retrospective study using multiple logistic regression analysis. Auris Nasus Larynx 28(2):117–120

    Article  CAS  PubMed  Google Scholar 

  157. Wada T, Sano H, Nishio SY, Kitoh R, Ikezono T, Iwasaki S et al (2017) Differences between acoustic trauma and other types of acute noise-induced hearing loss in terms of treatment and hearing prognosis. Acta Otolaryngol 137(Suppl 565):S48–S52. https://doi.org/10.1080/00016489.2017.1297899

    Article  PubMed  Google Scholar 

  158. Himmelseher S, Durieux ME (2005) Revising a dogma: ketamine for patients with neurological injury? Anesth Analg 101(2):524–534, table of contents. https://doi.org/10.1213/01.ANE.0000160585.43587.5B

    Article  CAS  PubMed  Google Scholar 

  159. Proescholdt M, Heimann A, Kempski O (2001) Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res 904(2):245–251

    Article  CAS  PubMed  Google Scholar 

  160. Reeker W, Werner C, Mollenberg O, Mielke L, Kochs E (2000) High-dose S(+)-ketamine improves neurological outcome following incomplete cerebral ischemia in rats. Can J Anaesth 47(6):572–578. https://doi.org/10.1007/BF03018950

    Article  CAS  PubMed  Google Scholar 

  161. Himmelseher S, Pfenninger E, Georgieff M (1996) The effects of ketamine-isomers on neuronal injury and regeneration in rat hippocampal neurons. Anesth Analg 83(3):505–512

    Article  CAS  PubMed  Google Scholar 

  162. Church J, Zeman S, Lodge D (1988) The neuroprotective action of ketamine and MK-801 after transient cerebral ischemia in rats. Anesthesiology 69(5):702–709

    Article  CAS  PubMed  Google Scholar 

  163. Hoffman WE, Pelligrino D, Werner C, Kochs E, Albrecht RF, Schulte am Esch J (1992) Ketamine decreases plasma catecholamines and improves outcome from incomplete cerebral ischemia in rats. Anesthesiology 76(5):755–762

    Article  CAS  PubMed  Google Scholar 

  164. Shapira Y, Lam AM, Eng CC, Laohaprasit V, Michel M (1994) Therapeutic time window and dose response of the beneficial effects of ketamine in experimental head injury. Stroke 25(8):1637–1643

    Article  CAS  PubMed  Google Scholar 

  165. Bing D, Lee SC, Campanelli D, Xiong H, Matsumoto M, Panford-Walsh R et al (2015) Cochlear NMDA receptors as a therapeutic target of noise-induced tinnitus. Cell Physiol Biochem 35(5):1905–1923. https://doi.org/10.1159/000374000

    Article  CAS  PubMed  Google Scholar 

  166. Engelhard K, Werner C, Mollenberg O, Kochs E (2001) S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anaesth 48(10):1034–1039. https://doi.org/10.1007/BF03016597

    Article  CAS  PubMed  Google Scholar 

  167. Langsjo JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V et al (2005) S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 103(2):258–268

    Article  PubMed  Google Scholar 

  168. Puel JL, Saffiedine S, Gervais d’Aldin C, Eybalin M, Pujol R (1995) Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C R Acad Sci III 318(1):67–75

    CAS  PubMed  Google Scholar 

  169. Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL et al (2008) Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci 28(29):7313–7323. https://doi.org/10.1523/JNEUROSCI.5335-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Eshraghi AA, Gupta C, Van De Water TR, Bohorquez JE, Garnham C, Bas E, Talamo VM (2013) Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling. Laryngoscope 123(Suppl 1):S1–S14. https://doi.org/10.1002/lary.23902

    Article  CAS  PubMed  Google Scholar 

  171. Scarpidis U, Madnani D, Shoemaker C, Fletcher CH, Kojima K, Eshraghi AA et al (2003) Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol 24(3):409–417

    Article  PubMed  Google Scholar 

  172. Wang JC, Raybould NP, Luo L, Ryan AF, Cannell MB, Thorne PR, Housley GD (2003) Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 14(6):817–823. https://doi.org/10.1097/01.wnr.0000067784.69995.47

    Article  CAS  PubMed  Google Scholar 

  173. Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 166(1–2):33–43

    Article  CAS  PubMed  Google Scholar 

  174. Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM et al (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20(1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang Y, Ji HX, Xing SH, Pei DS, Guan QH (2007) SP600125, a selective JNK inhibitor, protects ischemic renal injury via suppressing the extrinsic pathways of apoptosis. Life Sci 80(22):2067–2075. https://doi.org/10.1016/j.lfs.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  176. Basu S, Kolesnick R (1998) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17(25):3277–3285. https://doi.org/10.1038/sj.onc.1202570

    Article  PubMed  Google Scholar 

  177. Coleman JK, Littlesunday C, Jackson R, Meyer T (2007) AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res 226(1–2):70–78. https://doi.org/10.1016/j.heares.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  178. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23(48):7928–7946. https://doi.org/10.1038/sj.onc.1208080

    Article  CAS  PubMed  Google Scholar 

  179. Harris KC, Hu B, Hangauer D, Henderson D (2005) Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 208(1–2):14–25. https://doi.org/10.1016/j.heares.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  180. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626

    Article  CAS  PubMed  Google Scholar 

  181. Bielefeld EC, Hangauer D, Henderson D (2011) Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors. Neurosci Res 71(4):348–354. https://doi.org/10.1016/j.neures.2011.07.1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bielefeld EC, Hynes S, Pryznosch D, Liu J, Coleman JK, Henderson D (2005) A comparison of the protective effects of systemic administration of a pro-glutathione drug and a Src-PTK inhibitor against noise-induced hearing loss. Noise Health 7(29):24–30

    Article  PubMed  Google Scholar 

  183. Bielefeld EC, Wantuck R, Henderson D (2011) Postexposure treatment with a Src-PTK inhibitor in combination with N-l-acetyl cysteine to reduce noise-induced hearing loss. Noise Health 13(53):292–298. https://doi.org/10.4103/1463-1741.82962

    Article  PubMed  Google Scholar 

  184. Miller FD, Pozniak CD, Walsh GS (2000) Neuronal life and death: an essential role for the p53 family. Cell Death Differ 7(10):880–888. https://doi.org/10.1038/sj.cdd.4400736

    Article  CAS  PubMed  Google Scholar 

  185. Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R (2009) Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 7;161(3):915–925. https://doi.org/10.1016/j.neuroscience.2009.03.072

  186. Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D (2014) A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor. Neurosci Res 81–82:30–37. https://doi.org/10.1016/j.neures.2014.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Lobarinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escabi, C., Trevino, M., Bielefeld, E., Lobarinas, E. (2020). Noise-Induced Hearing Loss and Drug Therapy: Basic and Translational Science. In: Pucheu, S., Radziwon, K., Salvi, R. (eds) New Therapies to Prevent or Cure Auditory Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-40413-0_2

Download citation

Publish with us

Policies and ethics