Skip to main content

Membrane Tension and the Role of Ezrin During Phagocytosis

  • Chapter
  • First Online:
Molecular and Cellular Biology of Phagocytosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1246))

Abstract

During phagocytosis, there is an apparent expansion of the plasma membrane to accommodate the target within a phagosome. This is accompanied (or driven by) a change in membrane tension. It is proposed that the wrinkled topography of the phagocyte surface, by un-wrinkling, provides the additional available membrane and that this explains the changes in membrane tension. There is no agreement as to the mechanism by which unfolding of cell surface wrinkles occurs during phagocytosis, but there is a good case building for the involvement of the actin-plasma membrane crosslinking protein ezrin. Not only have direct measurements of membrane tension strongly implicated ezrin as the key component in establishing membrane tension, but the cortical location of ezrin changes at the phagocytic cup, suggesting that it is locally signalled. This chapter therefore attempts to synthesise our current state of knowledge about ezrin and membrane tension with phagocytosis to provide a coherent hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Jumaa MA, Dewitt S, Hallett MB (2017) Topographical interrogation of the living cell surface reveals its role in rapid cell shape changes during phagocytosis and spreading. Sci Rep 7:9790

    Article  PubMed  PubMed Central  Google Scholar 

  • Algrain M, Turunen O, Vaheri A, Louvard D, Arpin M (1993) Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol 120:129–139

    Article  CAS  PubMed  Google Scholar 

  • Berryman M, Franck Z, Bretscher A (1993) Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is primarily found in endothelial cell. J Cell Sci 105:1025–1043

    CAS  PubMed  Google Scholar 

  • Berryman M, Gary R, Bretscher A (1995) Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol 131:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Bessis M (1973) Living blood cells and their ultrastructure. Springer, Berlin

    Google Scholar 

  • Bonilha VL, Finnemann SC, Rodriguez-Boulan E (1999) Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J Cell Biol 47:1533–1544

    Article  Google Scholar 

  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunger JA, Brückner BR, Nehls S, Pietuch A, Gerke V, Mey I, Janshoff A, Steinem C (2014) Phosphatidylinositol 4,5-bisphosphate alters the number of attachment sites between ezrin and actin filaments. J Biol Chem 289:9833–9843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretscher A (1983) Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol 97:425–432

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Nijhara R, Hallam JA, Gignac M, Yamada KM, Erlandsen SL, Delon J, Kruhlak MJ, Shaw S (2003) Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERMs which facilitates loss of microvilli and polarization. Blood 102:3890–3899

    Article  CAS  PubMed  Google Scholar 

  • Cannon GJ, Swanson JA (1992) The macrophage capacity for phagocytosis. J Cell Sci 101:907–913

    PubMed  Google Scholar 

  • Casaletto JB, Saotome I, Curto M, McClatchey A (2011) Ezrin-mediated apical integrity is required for intestinal homeostasis. Proc Natl Acad Sci U S A 108:11924–11929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscoy S, Waharte F, Gautreau A, Martin M, Louvard D, Mangeat P, Arpin M, Amblard F (2002) Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc Natl Acad Sci U S A 99:12813–12818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Dewitt S, Hallett MB (2002) Cytosolic free Ca2+ changes and calpain activation are required for ß2 integrin-accelerated phagocytosis by human neutrophils. J Cell Biol 159:181–189

    Google Scholar 

  • Dewitt S, Hallett MB (2007) Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol 81:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Dewitt S, Tian W, Hallett MB (2006) Localised PtdIns(3,4,5)P3 or PtdIns(3,4)P2 at the phagocytic cup is required for both phagosome closure and Ca2+ signalling in HL60 neutrophils. J Cell Sci 119:443–451

    Article  CAS  PubMed  Google Scholar 

  • Dewitt S, Darley RL, Hallett MB (2009) Translocation or just location? Pseudopodia affect fluorescent signals. J Cell Biol 184:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewitt S, Francis RJ, Hallett MB (2013) Ca2+ and calpain control membrane expansion during the rapid cell spreading of neutrophils. J Cell Sci 126:4627–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di A, Krupa B, Bindokas VP, Chen Y, Brown ME, Palfrey HC, Naren AP, Kirk KL, Nelson DJ (2002) Quantal release of free radicals during exocytosis of phagosomes. Nat Cell Biol 4:279–285

    Article  CAS  PubMed  Google Scholar 

  • Diz-Munoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, Paluch E, Heisenberg C-P (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dormann D, Weijer G, Dowler S, Weijer CJ (2004) In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium in phagocytosis and chemotaxis. J Cell Sci 117:6497–6509

    Article  CAS  PubMed  Google Scholar 

  • Elumalai GL (2012) Cytosolic signalling and behaviour of oral neutrophils “Search for biochemical memory”. PhD thesis, Cardiff University. http://orca.cf.ac.uk/43089/

  • Elumalai GL, Dewitt S, Hallett MB (2011) Ezrin and talin relocates from the plasma membrane to cytosol during neutrophil extravasation. Eur J Clin Investig 41(Suppl. 1):47–47

    Google Scholar 

  • Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton

    Google Scholar 

  • Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M (2004) Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 164:653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis EA, Heinrich V (2018) Mechanistic understanding of single-cell behavior is essential for transformative. Advances in biomedicine. Yale J Biol Med 91:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz M (2009) Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 20:3261–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci U S A 108:14467–14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautreau A, Louvard D, Arpin M (2000) Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J Cell Biol 150:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillou L, Babataheri A, Saitakis M, Bohineust A, Dogniaux S, Hivroz C, Barakat A, Husson J (2016) T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs. Mol Biol Cell 27:3574–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallett MB, Dewitt S (2007) Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    Article  CAS  PubMed  Google Scholar 

  • Herant M, Heinrich V, Dembo M (2005) Mechanics of neutrophil phagocytosis: behavior of the cortical tension. J Cell Sci 118:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomechanics 33:15–22

    Article  CAS  Google Scholar 

  • Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, Altschuler SJ, Wu LF, Weiner OD (2012) Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:175–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam J, Herant M, Dembo M, Heinrich V (2009) Baseline mechanical characterization of J774 macrophages. Biophys J 96:248–254

    Article  CAS  PubMed  Google Scholar 

  • Lee C-Y, Thompson GR, Hastey CJ, Hodge GC, Lunetta JM, Pappagianis D, Heinrich V (2015) Coccidioides endospores and spherules draw strong chemotactic, adhesive, and phagocytic responses by individual human neutrophils. PLoS One 10:e0129522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Belkina NV, Park C, Nambiar R, Loughhead SM, Patino-Lopez G, Ben-Aissa K, Hao J-J, Kruhlak MJ, Qi H, von Andrian UH, Kehrl JH, Tyska MJ, Shaw S (2012) Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood 119:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masters TA, Pontes B, Viasnoff V, Li Y, Gauthier NC (2013) Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A 110:11875–11880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J 65:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petty HR, Haffeman DD, McConnell HM (1981) Disappearance of macrophage surface folds after antibody-dependent phagocytosis. J Cell Biol 89:223–229

    Article  CAS  PubMed  Google Scholar 

  • Pollard T (1990) Actin. Curr Opin Cell Biol 2:33–40

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo SL, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphoshate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RE, Hallett MB (2019) Neutrophil cell shape change: mechanism and signalling during cell spreading and phagocytosis. Int J Mol Sci 19:1383–1398

    Article  CAS  Google Scholar 

  • Roberts RE, Vervliet T, Bultynck G, Parys JB, Hallett MB (2017) Dynamics of ezrin location at the plasma membrane: relevance to neutrophil spreading. Eur J Clin Invest 47(Suppl 1):148–148

    Google Scholar 

  • Roberts RE, Elumalai GL, Hallett MB (2018) Phagocytosis and motility in human neutrophils is competent but compromised by pharmacological inhibition of ezrin phosphorylation. Curr Mol Pharmacol 11:305–315

    Article  CAS  PubMed  Google Scholar 

  • Roberts RE, Martin M, Marion S, Elumalai GL, Lewis K, Hallett MB (2020) Ca2+ activated cleavage of ezrin visualised dynamically in living cells during phagocytosis and “cell surface area expansion”. J Cell Sci 133: jcs236968. https://doi.org/10.1242/jcs.236968

  • Rouven Brückner B, Pietuch A, Nehls S, Rother J, Janshoff A (2015) Ezrin is a major regulator of membrane tension in epithelial cells. Sci Rep 5:14700. https://doi.org/10.1038/srep14700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2(5):392–396

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MP, Dai JW (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–89

    Article  CAS  PubMed  Google Scholar 

  • Stossel T (1982) The structure of cortical cytoplasm. Philos Trans R Soc Lond Ser B 299:275–289

    Article  CAS  Google Scholar 

  • Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thore S, Dyachok O, Gylfe E, Tengholm A (2005) Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting β-cells. J Cell Sci 118:4463 –4471

    Article  CAS  PubMed  Google Scholar 

  • Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A (2013) Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem 288:35437–35451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waugh RE (1983) Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties. Cell Motil 3:609–622

    Article  CAS  PubMed  Google Scholar 

  • Yonemura S, Tsukita S, Tsukita S (1999) Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol 145:1497–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hoppe AD, Swanson JA (2010) Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc Natl Acad Sci U S A 107:19332–19337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice B. Hallett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, R.E., Dewitt, S., Hallett, M.B. (2020). Membrane Tension and the Role of Ezrin During Phagocytosis. In: Hallett, M. (eds) Molecular and Cellular Biology of Phagocytosis . Advances in Experimental Medicine and Biology, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-40406-2_6

Download citation

Publish with us

Policies and ethics