Skip to main content

Nanoparticle-Based Antimicrobial Coating on Medical Implants

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Abstract

Infections after implantation are the major concern in the field of clinical surgery. The microbial adhesion on the surface of implant favors for colonization and biofilm formation. The host immune system and systemic antibiotics could have not inhibited the microbial adhesion and growth, which resulted in sepsis. Thus, surface modification of implants has gained attention to prevent the bacterial adhesion on the surface of the implant. Various coating methods have been developed, namely, passive surface coating, active surface coating, and local carriers or coatings, with the aim of preventing microbial adhesion and biofilm formation. Nanoparticle coating is one potential alternative for successful clinical outcomes. This book chapter aims to give a brief report on the need of coating on the implants against the bacterial colonization on the surface of the implant and especially the role of nanoparticle-based antimicrobial coated medical devices in the prevention of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerfaces 107:227–234

    Article  CAS  PubMed  Google Scholar 

  • Al BM, Mahmoud GF, Bakowsky U (2018) Immobilization and characterization of PLGA nanoparticles on polyethylene terephthalate cardiovascular grafts for local drug therapy of associated graft complications. J Drug Delivery Sci Technol 47:144–150

    Article  CAS  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL, Evans C (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant Bacteria and leishmania parasites. Future Microbiol 6:933–940

    Article  CAS  PubMed  Google Scholar 

  • Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16(7):397–409

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baghdan E, Pinnapireddy SR, Vögeling H, Schäfer J, Eckert AW, Bakowsky U, (2018) Nano spray drying: A novel technique to prepare welldefined surface coatings for medical implants. J Drug Deliv Sci Technol 48:145–151

    Google Scholar 

  • Bartkowiak A, Suchanek K, Szaraniec B, Lekki J, Perzanowski M, Marsza M (2018) Biological effect of hydrothermally synthesized silica nanoparticles within crystalline hydroxyapatite coatings for titanium implants. Mater Sci Eng C 92:88–95

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Bosco R, Van Den Beucken J, Leeuwenburgh S, Jansen J (2012) Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2:95–119

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-iliou R, Brivois N, Djediat S, Benedetti MF, Fie F, Cedex P, De Ge L (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano 6:866–870

    CAS  Google Scholar 

  • Busscher HJ, Van Der Mei HC (2012) How do Bacteria know they are on a surface and regulate their response to an adhering state ? PLoS Pathog 8(1):e100240

    Article  CAS  Google Scholar 

  • Carré G, Hamon E, Ennahar S, Estner M, Lett M-c, Horvatovich P, Gies J-p (2014) TiO2 photocatalysis damages lipids and proteins in. Appl Environ Microbiol 80(8):2573–2581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cousins BG, Allison HE, Doherty PJ, Edwards C, Garvey MJ, Martin DS (2007) Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol I 102:757–765

    Article  CAS  Google Scholar 

  • Crubzy E, Murail P, Girard L, Bernadou J-P (1998) False teeth of the Roman World. Nature 391:29–29

    Article  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli Q. Biomaterials 33:2327–2333

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO, Raad I (1999) Antimicrobial impregnated catheters and other medical implants. US Patent 5,902,283

    Google Scholar 

  • Dhapte V, Kadam S, Moghe A, Pokharkar V, Bhavan V, Marg BS (2014) Probing the wound healing potential of biogenic silver nanoparticles. J Wound Care 23:431–441

    Article  CAS  PubMed  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxides nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Dong Y, Ye H, Liu Y, Xu L, Wu Z, Hu X, Ma J, Pathak JL, Liu J, Wu G (2017) PH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control Peri-implant infection. Colloids Surf B: Biointerfaces 158:127–136

    Article  CAS  PubMed  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–6

    Google Scholar 

  • Elsawy AM, Attia NF, Mohamed HI, Mohsen M, Talaat MH (2018) Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater Sci Eng C 96:708–715

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Steven M, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54(6):1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Gil-Tomás J, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP, Wilson M, Street C (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  CAS  Google Scholar 

  • Gonz MI, Perni S, Tommasi G, Morris G, Karl Hawkins LE, Perni S et al (2015) Silver nanoparticles based antibacterial methacrylate hydrogels potentially for bone graft applications. Mater Sci Eng C 50:332–340

    Article  CAS  Google Scholar 

  • Goodman CM, Mccusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Wang J, You Y, Tan J, Shen HAO (2017) Distribution characteristics of Staphylococcus Spp. in different phases of periprosthetic joint infection: a review. Exp Ther Med 13:2599–2608

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S (2013) Antifungal activity of TiO(2) nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 1:33–38

    Article  Google Scholar 

  • Haider A, Kang I-k (2015) Preparation of silver nanoparticles and their industrial and biomedical applications : a comprehensive review. Adv Mater Sci Eng 2015:1–5

    Article  CAS  Google Scholar 

  • Hexter AT, Hislop SM, Blunn GW, Liddle AD (2018) The effect of bearing surface on risk of periprosthetic joint infection in total hip arthroplasty: a systematic review and meta-analysis. Bone Joint J 100:134–142

    Article  PubMed  Google Scholar 

  • Hickok NJ, Shapiro IM, Chen AF (2018) The impact of incorporating antimicrobials into implant surfaces. J Dent Res 97(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Holá V, Růžička F, Votava M (2006) The dynamics of Staphylococcus epidermis biofilm formation in relation to nutrition, temperature, and time. Scr Med 79(July):169–174

    Google Scholar 

  • Honkanen M, Jämsen E, Karppelin M, Huttunen R, Eskelinen A, Syrjänen J (2019) Periprosthetic Joint Infections as a Consequence of Bacteremia. Open Forum Infect. Dis 6(6):1–6

    Google Scholar 

  • Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, el Bitar Y, Saleh KJ (2013) How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty. J Bone Joint Surg 50:1–13

    Google Scholar 

  • Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121(1–2):198–201

    Article  CAS  Google Scholar 

  • Javadi A, Solouk A, Nazarpak MH, Bagheri F (2019) Surface engineering of titanium-based implants using electrospraying and dip coating methods. Mater Sci Eng C 99:620

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-c, Kahru A (2009) Toxicology in vitro toxicity of nanoparticles of ZnO, CuO and TiO(2) to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Kim GC, Kim GJ, Park SR, Jeon SM, Seo HJ, Iza F, Lee JK (2008) Air plasma coupled with antibody-conjugated nanoparticles. J Phys D Appl Phys 42:032005

    Article  CAS  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS, Siu RK et al (2012) The antimicrobial and osteoinductive properties of silver nanoparticle/poly(D, L-lactic-co-glycolic acid) -coated stainless steel. Biomaterials 33(34):8745–8756

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3(3):185–93

    Google Scholar 

  • Mendonça G, Mendonça DBS, Araga FJL (2008) Biomaterials advancing dental implant surface technology – from micron- to nanotopography. Biomaterials 29:3822–3835

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ram JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  PubMed  Google Scholar 

  • Mukha I, Eremenko А, Korchak G, Michienkova А (2010) Antibacterial action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica. J Water Res Protect 2:131–136

    Article  CAS  Google Scholar 

  • Nabila MI, Kannabiran K (2018) Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from Actinomycetes. Biocatal Agric Biotechnol 15:56–62

    Article  Google Scholar 

  • Nganga S, Travan A, Marsich E (2013) In vitro antimicrobial properties of silver – polysaccharide coatings on porous fiber-reinforced composites for bone implants. J Mater Sci Mater Med 24:2775–2785

    Article  CAS  PubMed  Google Scholar 

  • Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-a brief study. Colloids Surf A Physicochem Eng Asp 297(1–3):63–70

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles — an antimicrobial study. Sci Technol Adv Mater 9:035004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panteli M, Giannoudis PV (2016) Chronic osteomyelitis: what the surgeon needs to know. EFORT Open Reviews 1(5):128–135

    Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(4):323–334

    Article  PubMed  Google Scholar 

  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28(4):207–213

    Article  CAS  PubMed  Google Scholar 

  • Pitarresi G, Salvatore F, Calascibetta F, Fiorica C, Di M, Giammona G (2013) Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. Int J Pharmaceut 449:84–94

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Prasad R (2019) Plant Nanobionics: Approaches in Nanoparticles Biosynthesis and Toxicity. Springer International Publishing (ISBN 978-3-030-16379-2). https://www.springer.com/gp/book/9783030163785

  • Qasim M, Udomluck N, Chang J, Park H, Kim K (2018) Antimicrobial activity of silver nanoparticles encapsulated in poly- N -isopropylacrylamide-based polymeric nanoparticles. Int J Nanomedicine 54:235–249

    Article  Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Feris K, Bell J, Wingett DG, Hanley C (2012) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 213902(2007):10–13

    Google Scholar 

  • Riley DK, Classen DC, Stevens LE, Burke JP (1995) A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am J Med 98:349–356

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. In: Linke D, Goldman A (eds) Bacterial adhesion, Advances in experimental medicine and biology. Springer, Dordrecht, pp 351–367

    Chapter  Google Scholar 

  • Roe D, Karandikar B, Bonn-savage N, Gibbins B, Roullet J-b (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876

    Article  CAS  PubMed  Google Scholar 

  • Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:57

    Article  Google Scholar 

  • Roy AS, Parveen A, Koppalkar AR, Ambika Prasad MVN (2010) Effect of Nano – titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37–41

    Article  CAS  Google Scholar 

  • Saha B, Bhattacharya J, Mukherjee A, Ghosh AK, Santra CR, Dasgupta AK, Karmakar P (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2(12):614–622

    Article  CAS  PubMed Central  Google Scholar 

  • Selvaraj V, Alagar M (2007) Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int J Pharm 337(1–2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Shahzadi L, Chaudhry AA, Aleem AR (2018) Development of K-doped ZnO nanoparticles encapsulated crosslinked chitosan based new membranes to stimulate angiogenesis in tissue engineered skin grafts. Int J Biol Macromol 120:721–728

    Article  CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface 275:177–182

    Article  CAS  Google Scholar 

  • Stock SR (2015) The mineral – collagen interface in bone. Calcif Tissue Int 97:262–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, Hayball JD, Vasilev K (2014) Biomaterials substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 35(16):4601–4609

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann 32:573–582

    Article  Google Scholar 

  • Tran N, Tran PA (2012) Nanomaterial-based treatments for medical device-associated infections. Chem Phys Chem 13:2481–2494

    Article  CAS  PubMed  Google Scholar 

  • Tran PA, Hocking DM, Connor AJO (2015) In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater Sci Eng C 47:63–69

    Article  CAS  Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 2013(8):4467–4479

    Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B: Biointerfaces 101:162–170

    Article  CAS  PubMed  Google Scholar 

  • Wilcox MW, Nash E, Martin TW, Rodriguez A, Rogers RF (1998) Cartridge dispensing system for dental material. United States Patent US 5,722,829

    Google Scholar 

  • Wood NJ, Jenkinson HF, Davis SA, Mann S, Sullivan DJO, Barbour ME (2015) Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. J Mater Sci Mater Med 26:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie C-m, Lu X, Wang K-f, Meng F-z, Jiang O, Zhang H-p, Zhi W (2014) Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces 6:8580–8589

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Zhu Y, Yu B, Sun Y (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules 19:2805–2811

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D, (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9(3):479–489

    Google Scholar 

  • Zhang Y, Mo Y, Portney NG (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus. J Nanotechnol 10:19

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birru Bhaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhaskar, B. et al. (2020). Nanoparticle-Based Antimicrobial Coating on Medical Implants. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_4

Download citation

Publish with us

Policies and ethics