Skip to main content

A Review on Next-Generation Nano-Antimicrobials in Orthopedics: Prospects and Concerns

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Abstract

Recently an increase in occurrence of bone implant infections leading to implant failure and need for revision surgery has been observed. The major reason being development of antibiotic resistant microbes (MRSA and MRSE), while the withdrawal of antibiotic and suboptimal dose are further increasing the chances of antibiotic resistance. In recent time, nanotechnology interventions have led to emergence of a new generation of microbicidal agents the “nano-antimicrobials” showing potent antimicrobial efficacy even against MRSA. To circumvent this problem in orthopedics, multiple efforts are being made to make potent antimicrobials that can be nontoxic for cells and able to counter resist microbes simultaneously. Owing to the unique physicochemical properties, the nanomaterials exhibit tremendous capabilities and hence utility in the field of orthopedics. However, the long-term implications of these nanomaterials upon health are feebly understood. This review focuses on the current scenario, mechanism of action, and future perspective and concerns of this emerging field of “nanobiotics” to alleviate the postsurgical infections to pave the way for better clinical orthopedic requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal MAF, Kalmodia S, Kesarwani P, Basu B, Balani K (2013) Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J Biomater Appl 27(8):967–978

    Article  PubMed  Google Scholar 

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Amari DT, Marques CN, Davies DG (2013) The putative enoyl-CoA hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer, cis-2-decenoic acid. J Bacteriol 195(20):4600–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose CG, Clyburn TA, Mika J, Gogola GR, Kaplan HB, Wanger A, Mikos AG (2014) Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. JBJS 96(2):128–134

    Article  Google Scholar 

  • Arciola CR, Campoccia D, An YH, Baldassarri L, Pirini V, Donati ME, Montanaro L (2006) Prevalence and antibiotic resistance of 15 minor staphylococcal species colonizing orthopedic implants. Int J Artif Organs 29(4):395–401

    Article  CAS  PubMed  Google Scholar 

  • Avés EP, Estévez GF, Sader MS, Sierra JCG, Yurell JCL, Bastos IN, Soares GDA (2009) Hydroxyapatite coating by sol–gel on Ti–6Al–4V alloy as drug carrier. J Mater Sci Mater Med 20(2):543–547

    Article  PubMed  CAS  Google Scholar 

  • Barradas, A. M., Yuan, H., van Blitterswijk, C. A., & Habibovic, P. (2011). Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater, 21 407 429.

    Google Scholar 

  • Bastari K, Arshath M, Ng ZHM, Chia JH, Yow ZXD, Sana B, Loo SCJ (2014) A controlled release of antibiotics from calcium phosphate-coated poly (lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med 25(3):747–757

    Article  CAS  PubMed  Google Scholar 

  • Belt HVD, Neut D, Schenk W, Horn JRV, Mei HCVD, Busscher HJ (2000) Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthop Scand 71(6):625–629

    Article  PubMed  Google Scholar 

  • Bhattacharya S, Pal K, Jain S, Chatterjee SS, Konar J (2016) Surgical site infection by methicillin resistant Staphylococcus aureus–on decline? J Clin Diagn Res 10(9):DC32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Henk JTM (2000) Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma Acute Care Surg 48(1):179

    Article  CAS  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongio M, Van den Beucken JJJP, Nejadnik MR, Leeuwenburgh SCG, Kinard LA, Kasper FK, Jansen JA (2011) Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Eur Cell Mater 22(3):59–76

    Google Scholar 

  • Braem A, Van Mellaert L, Mattheys T, Hofmans D, De Waelheyns E, Geris L, Vleugels J (2014) Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A 102(1):215–224

    Article  PubMed  CAS  Google Scholar 

  • Buchholz HW, Engelbrecht H (1970) Depot effects of various antibiotics mixed with Palacos resins. Chirurg 41(11):511–515

    CAS  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339

    Article  CAS  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Liu X, Meng F, Chu PK (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32(3):693–705

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2009) The National Healthcare Safety Network (NHSN) Manual. Patient safety component protocol [Internet]. Atlanta (GA): CDC [cited 2019 Jan 2]. Available from: http://www.cdc.gov/nhsn/PDFs/pscManual/pscManual_current.pdf

  • Chatterjee T, Chatterjee BK, Majumdar D, Chakrabarti P (2015) Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochim Biophys Acta 1850(2):299–306

    Article  CAS  PubMed  Google Scholar 

  • Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly (N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6(12):1026–1039

    Article  CAS  PubMed  Google Scholar 

  • Choong PF, Dowsey MM, Carr D, Daffy J, Stanley P (2007) Risk factors associated with acute hip prosthetic joint infections and outcome of treatment with a rifampin based regimen. Acta Orthop 78(6):755–765

    Article  PubMed  Google Scholar 

  • Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M (2010) Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48(5):1584–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofu O, Bagge N, HØiby N (2002) Antibodies against β-lactamase can improve ceftazidime treatment of lung infection with β-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 110(12):881–891

    Article  CAS  PubMed  Google Scholar 

  • Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32(11):1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci 105(49):19456–19461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Crear J, Kummer KM, Webster TJ (2013) Decreased cervical cancer cell adhesion on nanotubular titanium for the treatment of cervical cancer. Int J Nanomedicine 8:995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Disegi JA (2000) Titanium alloys for fracture fixation implants. Injury 31:D14–D17

    Article  Google Scholar 

  • Drago L, Boot W, Dimas K, Malizos K, Hänsch GM, Stuyck J, Romanò CL (2014) Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 472(11):3311–3323

    Article  PubMed  PubMed Central  Google Scholar 

  • Durmus NG, Webster TJ (2013) Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles. Adv Healthc Mater 2(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Elganzoury I, Bassiony AA (2013) Early results of trabecular metal augment for acetabular reconstruction in revision hip arthroplasty. Acta Orthop Belg 79(5):530–535

    PubMed  Google Scholar 

  • Eltorai AE, Haglin J, Perera S, Brea BA, Ruttiman R, Garcia DR, Daniels AH (2016) Antimicrobial technology in orthopedic and spinal implants. World J Orthop 7(6):361

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE (2008) Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 4(6):1854–1864

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF (2010) Bioactive glass scaffolds with controllable degradation rates for bone tissue engineering applications, II: In vitro and in vivo biological evaluation. J Biomed Mater Res A 95:172–179

    Article  PubMed  CAS  Google Scholar 

  • Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25(3):443–450

    Article  CAS  PubMed  Google Scholar 

  • Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186(14):4486–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20(9):449–458

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR, Foster TJ (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192(21):5663–5673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Gimeno M, Pinczowski P, Pérez M, Giorello A, Martínez MÁ, Santamaría J, Luján L (2015) A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. Eur J Pharm Biopharm 96:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Monahan LG (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci 110(28):11541–11546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez J, Rodriguez M, Banos V, Martinez L, Claver MA, Ruiz J, Clavel M (2003) Orthopedic implant infection: prognostic factors and influence of long-term antibiotic treatment on evolution. Prospective study, 1992–1999. Enferm Infecc Microbiol Clin 21(5):232–236

    Article  PubMed  Google Scholar 

  • Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA, Tjokro N, Li B, Justice SS, Bakaletz LO (2011) Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol 4(6):625

    Article  CAS  PubMed  Google Scholar 

  • Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LR (2012) Guide to the elimination of orthopedic surgery surgical site infections: an executive summary of the Association for Professionals in Infection Control and Epidemiology elimination guide. Am J Infect Control 40(4):384–386

    Article  PubMed  Google Scholar 

  • Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg 83(3):428–436

    Article  CAS  PubMed  Google Scholar 

  • Haralson RH, Zuckerman JD (2009) Prevalence, health care expenditures, and orthopedic surgery workforce for musculoskeletal conditions. JAMA 302(14):1586–1587

    Article  CAS  PubMed  Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24(5):1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Hench L, Jones J (eds) (2005) Biomaterials, artificial organs and tissue engineering. Elsevier, Cambridge

    Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Hing KA (2005) Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol 2(3):184–199

    Article  CAS  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010a) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  CAS  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010b) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5(11):1663–1674

    Article  PubMed  Google Scholar 

  • Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzwarth U, Cotogno G (2012) Total hip arthroplasty. European Commission, Brussels

    Google Scholar 

  • Huang H, Pierstorff E, Osawa E, Ho D (2008) Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Hudalla GA, Murphy WL (2011) Biomaterials that regulate growth factor activity via bioinspired interactions. Adv Funct Mater 21(10):1754–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutmacher D, Hürzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implant 11(5):667–678

    CAS  Google Scholar 

  • Ignjatović NL, Liu CZ, Czernuszka JT, Uskoković DP (2007) Micro-and nano-injectable composite biomaterials containing calcium phosphate coated with poly (dl-lactide-co-glycolide). Acta Biomater 3(6):927–935

    Article  PubMed  CAS  Google Scholar 

  • Ignjatovic NL, Ajdukovic ZR, Savic VP, Uskokovic DP (2010) Size effect of calcium phosphate coated with poly-DL-lactide-co-glycolide on healing processes in bone reconstruction. J Biomed Mater Res B Appl Biomater 94(1):108–117

    PubMed  Google Scholar 

  • Im O, Li J, Wang M, Zhang LG, Keidar M (2012) Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine 7:2087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio R, Robb WJ, Healy WL, Berry DJ, Hozack WJ, Kyle RF, Parsley BS (2008) Orthopaedic surgeon workforce and volume assessment for total hip and knee replacement in the United States: preparing for an epidemic. JBJS 90(7):1598–1605

    Article  Google Scholar 

  • Jacobs JJ, Hallab NJ, Skipor AK, Urban RM (2003) Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res 417:139–147

    Google Scholar 

  • Jamal R, Osman Y, Rahman A, Ali A, Zhang Y, Abdiryim T (2014) Solid-state synthesis and photocatalytic activity of polyterthiophene derivatives/TiO2 nanocomposites. Materials 7(5):3786–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jämsen E, Huhtala H, Puolakka T, Moilanen T (2009) Risk factors for infection after knee arthroplasty: a register-based analysis of 43,149 cases. JBJS 91(1):38–47

    Article  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49(6):2467–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA (2016) Periprosthetic joint infection. Lancet 387(10016):386–394

    Article  PubMed  Google Scholar 

  • Kaper HJ, Busscher HJ, Norde W (2003) Characterization of poly (ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomater Sci Polym Ed 14(4):313–324

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102(1):254–274

    Article  PubMed  CAS  Google Scholar 

  • Khalandi B, Asadi N, Milani M, Davaran S, Abadi AJN, Abasi E, Akbarzadeh A (2017) A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res 11(02):70–76

    Google Scholar 

  • Khosravi AD, Ahmadi F, Salmanzadeh S, Dashtbozorg A, Montazeri EA (2009) Study of bacteria isolated from orthopedic implant infections and their antimicrobial susceptibility pattern. Res J Microbiol 4:158–163

    Article  CAS  Google Scholar 

  • Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53(6):621–631

    Article  CAS  PubMed  Google Scholar 

  • Kohn DH, Sarmadi M, Helman JI, Krebsbach PH (2002) Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 60(2):292–299

    Article  CAS  PubMed  Google Scholar 

  • Korshed P, Li L, Liu Z, Wang T (2016) The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One 11(8):e0160078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kose N, Kose AA (2015) Application of nanomaterials in prevention of bone and joint infections. In: Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases, pp 107–117

    Chapter  Google Scholar 

  • Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, Coulter DA (2014) Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5:5259

    Article  CAS  PubMed  Google Scholar 

  • Lanao RPF, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC (2013) Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev 19(4):380–390

    Article  CAS  Google Scholar 

  • Lee JH, Park JH, Kim JA, Neupane GP, Cho MH, Lee CS, Lee J (2011) Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157: H7. Biofouling 27(10):1095–1104

    Article  PubMed  Google Scholar 

  • Legeay G, Poncin-Epaillard F, Arciola CR (2006) New surfaces with hydrophilic/hydrophobic characteristics in relation to (no) bioadhesion. Int J Artif Organs 29(4):453–461

    Article  CAS  PubMed  Google Scholar 

  • LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753

    Article  PubMed  CAS  Google Scholar 

  • Leveille SG (2004) Musculoskeletal aging. Curr Opin Rheumatol 16(2):114–118

    Article  PubMed  Google Scholar 

  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Yang F, Li H, So PK, Yao Z, Xia W, Sun H (2017) Targeting the thioredoxin reductase–thioredoxin system from Staphylococcus aureus by silver ions. Inorg Chem 56(24):14823–14830

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ (2012) Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater 7(2):024107

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  PubMed  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Webster TJ (2015a) Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes. Nanomedicine 10(5):713–723

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Su P, Arthur Gonzales SC III, Wang N, Wang J, Li H, Webster TJ (2015b) Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. Int J Nanomedicine 10:1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Shah A, Hunter RA, Soto RJ, Schoenfisch MH (2015) S-Nitrosothiol-modified nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Acta Biomater 12:62–69

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Chen Z, Sun Y (2006) Controlling biofilm formation with an N-halamine-based polymeric additive. J Biomed Mater Res A 77(4):823–831

    Article  PubMed  CAS  Google Scholar 

  • Magetsari R, Dewo P, Saputro BK, Lanodiyu Z (2014) Cinnamon oil and chitosan coating on orthopaedic implant surface for prevention of staphylococcus epidermidis biofilm formation. Malays Orthop J 8(3):11

    Article  Google Scholar 

  • Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Hospital Infection Control Practices Advisory Committee (1999) Guideline for prevention of surgical site infection, 1999. Infect Control Hosp Epidemiol 20(4):247–280

    Article  Google Scholar 

  • Mardanpour K, Rahbar M, Mardanpour S, Mardanpour N (2017) Surgical site infections in orthopedic surgery: incidence and risk factors at an Iranian teaching hospital. Clin Trials Orthop Disord 2(4):132

    Article  Google Scholar 

  • Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M (2013) Porous metal for orthopedics implants. Clinical cases in mineral and bone. Metabolism 10(2):111

    Google Scholar 

  • McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Stoodley P (2014) Biofilms in periprosthetic orthopedic infections. Future Microbiol 9(8):987–1007

    Article  CAS  PubMed  Google Scholar 

  • McLaren JS, White LJ, Cox HC, Ashraf W, Rahman CV, Blunn GW, Scammell BE (2014) A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. Eur Cell Mater 27:332–349

    Article  CAS  PubMed  Google Scholar 

  • Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD (2015) Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomedicine 10:1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moličnik A, Hanc M, Rečnik G, Krajnc Z, Rupreht M, Fokter SK (2014) Porous tantalum shells and augments for acetabular cup revisions. Eur J Orthop Surg Traumatol 24(6):911–917

    Article  PubMed  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho ACR, Barbosa DB (2012) Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont 21(1):7–15

    Article  PubMed  Google Scholar 

  • Nablo BJ, Rothrock AR, Schoenfisch MH (2005) Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 26(8):917–924

    Article  CAS  PubMed  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  • National Collaborating Centre for Women’s and Children’s Health (UK) (2008) Surgical site infection: prevention and treatment of surgical site infection. RCOG Press, London. (NICE Clinical Guidelines, No. 74.) 3, Definitions, surveillance and risk factors. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53724/

    Google Scholar 

  • National Nosocomial Infections Surveillance System (2004) National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485

    Article  Google Scholar 

  • Navarro M, Michiardi A, Castano O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1(1):30–42

    Article  PubMed  Google Scholar 

  • Ning CY, Zhou L, Tan GX (2016) Fourth-generation biomedical materials. Mater Today 19(1):2–3

    Article  Google Scholar 

  • Noel SP, Courtney H, Bumgardner JD, Haggard WO (2008) Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res 466(6):1377–1382

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18(5):263–272

    Article  CAS  PubMed  Google Scholar 

  • O’neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320(5878):949–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Özçelik H, Vrana NE, Gudima A, Riabov V, Gratchev A, Haikel Y, Klüter H (2015) Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties. Adv Healthc Mater 4(13):2026–2036

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30(11):513–521

    Article  CAS  PubMed  Google Scholar 

  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  CAS  PubMed  Google Scholar 

  • Parvizi J, Gehrke T, Chen AF (2013) Proceedings of the international consensus on periprosthetic joint infection. Bone Joint J 95(11):1450–1452

    Article  PubMed  Google Scholar 

  • Passuti N, Gouin F (2003) Antibiotic-loaded bone cement in orthopedic surgery. Joint Bone Spine 70(3):169–174

    Article  PubMed  Google Scholar 

  • Patti JM, Allen BL, McGavin MJ, Höök M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48(1):585–617

    Article  CAS  PubMed  Google Scholar 

  • Peleg AY, Hooper DC (2010) Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 362(19):1804–1813

    Google Scholar 

  • Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RWW, Chang PJ (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31(19):5227–5236

    Article  CAS  PubMed  Google Scholar 

  • Perez LM, Lalueza P, Monzon M, Puertolas JA, Arruebo M, Santamaría J (2011) Hollow porous implants filled with mesoporous silica particles as a two-stage antibiotic-eluting device. Int J Pharm 409(1-2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Periasamy S, Joo HS, Duong AC, Bach THL, Tan VY, Chatterjee SS, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci 109(4):1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyzois I, Nikolopoulos D, Michos I, Patsouris E, Theocharis S (2012) Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol 32(4):255–269

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, Jiang Y (2014) In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 35(33):9114–9125

    Article  CAS  PubMed  Google Scholar 

  • Quinteros MA, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL (2016) Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 36:216–223

    Article  CAS  PubMed  Google Scholar 

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798

    Article  CAS  Google Scholar 

  • Reading AD, Rooney P, Taylor GJS (2000) Quantitative assessment of the effect of 0.05% chlorhexidine on rat articular cartilage metabolism in vitro and in vivo. J Orthop Res 18(5):762–767

    Article  CAS  PubMed  Google Scholar 

  • Reighard KP, Hill DB, Dixon GA, Worley BV, Schoenfisch MH (2015) Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling 31(9-10):775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  CAS  PubMed  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci 104(19):8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha LB, Goissis G, Rossi MA (2002) Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 23(2):449–456

    Article  CAS  PubMed  Google Scholar 

  • Rochford ETJ, Richards RG, Moriarty TF (2012) Influence of material on the development of device-associated infections. Clin Microbiol Infect 18(12):1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: retrospective and outlook, vol 1. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 5:29–40

    Article  CAS  Google Scholar 

  • Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9(9):8037–8045

    Article  CAS  PubMed  Google Scholar 

  • Samuel S (2012) Antibiotic loaded acrylic bone cement in orthopaedic trauma. In: Osteomyelitis. InTech, London

    Google Scholar 

  • Sato M, Webster TJ (2004) Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices 1(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W (2006) Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43(8):961–967

    Article  PubMed  Google Scholar 

  • Seong M, Lee DG (2017) Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction. Curr Microbiol 74(6):661–670

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27(11):2440–2449

    Article  CAS  PubMed  Google Scholar 

  • Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7(1):22–39

    Article  CAS  PubMed  Google Scholar 

  • Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, Milani P (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One 6(9):e25029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Vidyarthi AS, Dev A (2015) Microbial synthesis of nanoparticles: An overview. In: Singh OV (ed) Bio-nanoparticles: biosynthesis and sustainable biotechnological implications. Wiley, New York, pp 155–186

    Google Scholar 

  • Smith WR, Hudson PW, Ponce BA, Manoharan SRR (2018) Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 19(1):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sohrabi M, Hesaraki S, Kazemzadeh A (2014) The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate. J Biomed Mater Res B Appl Biomater 102(3):561–573

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Conti SF, DeMeo PJ, Nistico L, Melton-Kreft R, Johnson S, Kathju S (2011) Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol 62(1):66–74

    Article  CAS  PubMed  Google Scholar 

  • Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30(30):5979–5987

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MP, McHale KJ, Parvizi J, Mehta S (2014) Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J 96(5):569–573

    Article  PubMed  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  PubMed  Google Scholar 

  • Tikariha S, Banerjee S, Dev A, Singh S (2017) Growth phase-dependent synthesis of gold nanoparticles using Bacillus Licheniformis. In: Mukhopahyay K, Kumar M, Sachan A (eds) Applications of biotechnology for sustainable development. Springer Nature, Singapore, pp 1–8

    Google Scholar 

  • Tran N, Tran PA, Jarrell JD, Engiles JB, Thomas NP, Young MD, Born CT (2013) In vivo caprine model for osteomyelitis and evaluation of biofilm-resistant intramedullary nails. Biomed Res Int 2013:674378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran N, Kelley MN, Tran PA, Garcia DR, Jarrell JD, Hayda RA, Born CT (2015) Silver doped titanium oxide–PDMS hybrid coating inhibits Staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Mater Sci Eng C 49:201–209

    Article  CAS  Google Scholar 

  • Uskoković V, Desai TA (2014) In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci 103(2):567–579

    Article  PubMed  CAS  Google Scholar 

  • van Hengel IA, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, Apachitei I (2017) Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials 140:1–15

    Article  PubMed  CAS  Google Scholar 

  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H J Eng Med 228(10):1083–1099

    Article  Google Scholar 

  • Villatte G, Massard C, Descamps S, Sibaud Y, Forestier C, Awitor KO (2015) Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application. Int J Nanomedicine 10:3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Ohle C, Gieseke A, Nistico L, Decker EM, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76(7):2326–2334

    Article  CAS  Google Scholar 

  • Wachol-Drewek Z, Pfeiffer M, Scholl E (1996) Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials 17(17):1733–1738

    Article  CAS  PubMed  Google Scholar 

  • Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM (2015) Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J 97(2):252–257

    Article  PubMed  Google Scholar 

  • Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, Liu Y (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Li H, Wang J, Chen S, Ma Y, Zhang Z (2012) Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films. ACS Appl Mater Interfaces 4(9):4516–4523

    Article  CAS  PubMed  Google Scholar 

  • Wang LN, Lin LX, Lin CJ, Shen C, Shinbine A, Luo JL (2013) Anodic TiO2 nanotubular arrays with pre-synthesized hydroxyapatite—an effective approach to enhance the biocompatibility of titanium. J Nanosci Nanotechnol 13(8):5316–5326

    Article  CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Liu C (2010) Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration. Biomaterials 31(6):1260–1269

    Article  CAS  PubMed  Google Scholar 

  • Weinstein SL (2000) 2000–2010: the bone and joint decade, 1–3. Ann Rheum Dis 59(2):81–82

    Article  Google Scholar 

  • Wenke JC, Owens BD, Svoboda SJ, Brooks DE (2006) Effectiveness of commercially-available antibiotic-impregnated implants. J Bone Joint Surg 88(8):1102–1104

    Article  CAS  Google Scholar 

  • Wilberforce SI, Finlayson CE, Best SM, Cameron RE (2011) A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater 7(5):2176–2184

    Article  CAS  PubMed  Google Scholar 

  • Willenegger H, Roth B (1986) Treatment tactics and late results in early infection following osteosynthesis. Unfallchirurgie 12(5):241–246

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Allen JS (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254(5034):1001–1003

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Kaudela K, Stoiber A, Menschik F (2006) Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery–one stage revision results. Cell Tissue Bank 7(4):319–323

    Article  CAS  PubMed  Google Scholar 

  • Winter GD, Simpson BJ (1969) Heterotopic bone formed in a synthetic sponge in the skin of young pigs. Nature 223(5201):88

    Article  CAS  PubMed  Google Scholar 

  • Wood TK, Barrios AFG, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27(11):2450–2467

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Park S, Liu Y, Lee K, Kim HS, Koh JT, Ong JL (2008) Development of sputtered nanoscale titanium oxide coating on osseointegrated implant devices and their biological evaluation. Vacuum 83(3):569–574

    Article  CAS  Google Scholar 

  • Yang C, Plackett D, Needham D, Burt HM (2009) PLGA and PHBV microsphere formulations and solid-state characterization: possible implications for local delivery of fusidic acid for the treatment and prevention of orthopaedic infections. Pharm Res 26(7):1644–1656

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Lin CC, Liao JW, Yen SK (2013) Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C 33(4):2203–2212

    Article  CAS  Google Scholar 

  • Yasmeen S, Lo MK, Bajracharya S, Roldo M (2014) Injectable scaffolds for bone regeneration. Langmuir 30(43):12977–12985

    Article  CAS  PubMed  Google Scholar 

  • Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9):9193–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Khalil A, Dang PN, Alsberg E, Murphy WL (2014) Multilayered inorganic microparticles for tunable dual growth factor delivery. Adv Funct Mater 24(20):3082–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YG, Peng QL, Gurunathan S (2017) Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci 18(3):569

    Article  PubMed Central  CAS  Google Scholar 

  • Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8(1):341–349

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29(36):4751–4759

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li J, Liu X, Sun J (2012) Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomedicine 7:875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers. Biomaterials 34(4):1402–1412

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Dev, A., Nigam, V.K., Padmanabhan, P., Singh, S. (2020). A Review on Next-Generation Nano-Antimicrobials in Orthopedics: Prospects and Concerns. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_2

Download citation

Publish with us

Policies and ethics