Skip to main content

Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Formation of biofilms is one of the most serious problems affecting the integrity of marine structures both onshore and offshore. These biofilms are the key reasons for fouling of marine structures. Biofilm and biofouling cause severe economic loss to the marine industry. It has been estimated that around 10% of fuel is additionally spent when the hull of ship is affected by fouling. However, the prevention and control treatments for biofilms and biofouling of marine structures often involve toxic materials which pose severe threat to the marine environment and are strictly regulated by international maritime conventions. In this context, biomaterials for the treatment of biofilms, fouling, and corrosion of marine structures assume much significance. In recent years, due to the technological advancements, various nanomaterials and nanostructures have revolutionized many of the biological applications including antibiofilm, antifouling, and anticorrosive applications in marine environment. Many of the biomaterials such as furanones and some polypeptides are found to have antibiofilm, antifouling, and anticorrosive potentials. Many of the nanomaterials such as metal (titanium, silver, zinc, copper, etc.) nanoparticles, nanocomposites, bioinspired nanomaterials, and metallic nanotubes were found to exhibit antifouling and anticorrosive applications in marine environment. Both biomaterials and nanomaterials have been used in the control and prevention of biofilms, biofouling, and corrosion in marine structures. In recent years, the biomaterials and nanomaterials were also characterized to have the ability to inhibit bacterial quorum sensing and thereby control biofilm formation, biofouling, and corrosion in marine structures. This chapter would provide an overview of the biomaterials from diverse sources and various category of nanomaterials for their use in antibiofilm, antifouling, and anticorrosion treatments with special reference to marine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465

    Article  CAS  Google Scholar 

  • Abiraman T, Kavitha G, Rengasamy R, Balasubramanian S (2016) Antifouling behavior of chitosan adorned zinc oxide nanorods. RSC Adv 6:69206–69217

    Article  CAS  Google Scholar 

  • Adnan M, Alshammari E, Patel M, Amir Ashraf S, Khan S, Hadi S (2018) Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. Peer J 6:5049

    Article  CAS  Google Scholar 

  • Al-TmimiG SL, Al-Rrubaai G, Zaki NH (2018) Antibiofilm activity of intracellular extracts of Westiellopsis prolifica isolated from local environment in Baghdad. JGPT 10:281–288

    Google Scholar 

  • Al Naamani L, Dobretsov S, Dutta J, Burgess G (2017) Chitosan-ZnO nanocomposite coatings for the prevention of marine fouling. Chemosphere 168:408–417

    Article  CAS  Google Scholar 

  • Amina M, Bensoltane A (2015) Review of pseudomonas attachment and biofilm formation in food industry. Poult Fish Wildl Sci 2:126

    Google Scholar 

  • Anupama R, Mukherjee A, Babu S (2018) Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 110:89–97

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Niikawa H, Kobayashi M (2013) Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species. J Nat Med 67(2):271–275

    Article  CAS  PubMed  Google Scholar 

  • Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5):445–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Armstrong E, Boyd KG, Pisacane A, Peppiatt CJ, Burgess JG (2000a) Marine microbial natural products in antifouling coatings. Biofouling 16:215–224

    Article  CAS  Google Scholar 

  • Armstrong E, Boyd KG, Burgess JG (2000b) Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Annu Rev 6:221–241

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: https://doi.org/10.3389/fmicb.2016.01984

  • Bakus GJ, Wright M, Khan AK, Ormsby B, Gulko D, Licuanan W, Carriazo E, Ortiz A, Chan DB, Lorenzana D, Huxley MP (1994) Experiments seeking marine natural antifouling compounds. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. AABalkema, Rotterdam, pp 373–381

    Google Scholar 

  • Bao K, Bostanci N, Thurnheer T, Belibasakis GN (2017) Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci Rep 7(1):4409

    Google Scholar 

  • Batley GE, Chapman JC, Wilson SP (1994) Environmental impacts of antifouling technology. In: Kjelleberg S, Steinberg P (eds) Biofouling: problems and solutions. UNSW, Sydney, pp 49–53

    Google Scholar 

  • Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion—an overview. Microbiology 30:177–190

    CAS  Google Scholar 

  • Besemer K (2015) Biodiversity, community structure and function of bio films in stream ecosystems. Res Microbiol 166:774–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattarai HD, Ganti VS, Paudel B, Lee YK, Lee HK, Hong YK, Shin HW (2007) Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World J Microbiol Biotechnol 23:243–249

    Article  CAS  Google Scholar 

  • Bremer P.J, Brooks S, Flint J, Palmer S, Burgess D, Lindsay D and Seale B (2018) Biofilm formation and control in the dairy industry, reference module in food science, Elsevier, Amsterdam

    Google Scholar 

  • Brown GD, Wong HF, Hutchinson N, Lee SC, Chan BKK, Williams GA (2004) Chemistry and biology of maculalactone A from the marine cyanobacterium Kyrtuthrix maculans. Phytochem Rev 3:381–400

    Article  CAS  Google Scholar 

  • Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197–205

    Article  CAS  PubMed  Google Scholar 

  • Busetti A, Thompson TP, Tegazzini D, Megaw J, Maggs CA, Gilmore BF (2015) Antibiofilm activity of the brown alga Halidrys siliquosa against clinically relevant human pathogens. Mar Drugs 13(6):3581–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo F, Frolund Jr, Van Ommen F, Kloekeand Nielsen PH (1996) Deflocculation of activated sludge by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Appl Environ Microbiol 62:1487–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Song Y, Chen C, Shi J, Gan L (2018) Natural chromatin is heterogeneous and self-associates in vitro. Mol Biol Cell 29(13):1652–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caicedo K-H, Rosenwinkel, Exner M, Verstraete W, Suchenwirth R, Hartemann P, Nogueira R (2019) Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: review. Water Res 149:21–34

    Article  CAS  PubMed  Google Scholar 

  • Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244–253

    Article  PubMed  CAS  Google Scholar 

  • Caumette P (1986) Phototrophic sulfur bacteria and sulfate reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prévost Lagoon, France). FEMS Microbiol Ecol 38:113–124

    Google Scholar 

  • Cen-Pacheco F, Santiago-Benítez AJ, García C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids from laurencia viridis: combined spectroscopic–computational analysis and antifouling potential. J Nat Prod 78:712–721

    Article  CAS  PubMed  Google Scholar 

  • Chambers LD, Stokes KR, Walsh FC (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652

    Article  CAS  Google Scholar 

  • Chapman J, Hellio C, Sullivan T, Brown R, Russell S, Kiterringham E, Le Nor L, Regan F (2014) Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. Int Biodeterior Biodegrad 86:6–13

    Article  CAS  Google Scholar 

  • Chen D, Yu S, Van Ofwegen L, Proksch P, Lin W (2012) Anthogorgienes A-O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J Agric Food Chem 60:112–123

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Shao CL, Wang KL, Xu Y, She ZG, Wang CY (2014) Dihydroisocoumarin derivatives with antifouling activities from a gorgonian-derived Eurotium sp. fungus. Tetrahedron 70:9132–9138

    Article  CAS  Google Scholar 

  • Cho JY (2012) Antifouling steroids isolated from red alga epiphyte filamentous bacterium Leucothrix mucor. Fish Sci 78:683–689

    Article  CAS  Google Scholar 

  • Cho JY (2013) Antifouling chromanols isolated from brown alga Sargassum horneri. J Appl Phycol 25:299–309

    Article  Google Scholar 

  • Cho JY, Kim MS (2012) Induction of antifouling diterpene production by Streptomyces cinnabarinus PK209 in co-culture with marine-derived Alteromonas sp. KNS-16. Biosci Biotechnol Biochem 76:1849–1854

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS (2012) Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291-11. Biosci Biotechnol Biochem 76:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Claisse D, Alzieu C (1993) Copper contamination as a result of antifouling paint regulations? Mar Pollut Bull 26:395–397

    Article  CAS  Google Scholar 

  • Conley J, Olson ME, Cook LS, Ceri H, Phan V, Davies HD (2003) Biofilm formation by group a streptococci: is there a relationship with treatment failure? J Clin Microbiol 41(9):4043–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton J, Lewandowski Z (1995) Microbial biofilms. Annu Rev Microbial 49:71–45

    Article  Google Scholar 

  • Dahms HW, Dobretsov S (2017) Antifouling compounds from marine macroalgae. Mar Drugs 15:E265

    Article  PubMed  CAS  Google Scholar 

  • Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 4:847–867

    Article  Google Scholar 

  • De Carvalho Carla CCR (2018) Marine Biofilms: A Successful Microbial Strategy with Economic Implications. Front Mar Sci 5:126

    Article  Google Scholar 

  • De Giglio O, Napoli C, Apollonio F, Brigida S, Marzella A, Diella G, Calia C, Scrascia M, Pacifico C, Carlo Pazzani C, Vito Felice Uricchio VF, Montagna MT (2019) Occurrence of legionella in groundwater used for sprinkler irrigation in Southern Italy. Environ Res 170:215–221

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira AM, Férnandes MDS, Filho BAA, Gomes RG, Bergamasco R (2018) Inhibition and removal of staphylococcal biofilms using Moringa oleifera Lam. aqueous and saline extracts. J Environ Chem Eng 6:2011–2016

    Article  CAS  Google Scholar 

  • De Souza ME, Lopes LQS, Vaucher RA, Santos RCV (2014) Antibiofilm applications of nanotechnology. Fungal Genom Biol 4:117

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4:107

    Article  CAS  Google Scholar 

  • Diers JA, Bowling JJ, Duke SO, Wahyuono S, Kelly M, Hamann MT (2006) Zebra mussel antifouling activity of the marine natural product aaptamine and analogs. Mar Biotechnol 8:366–372

    Article  CAS  Google Scholar 

  • Dickschat JS, Wagner-Döbler I, Schulz S (2005) The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J Chem Ecol 31(4):925–947

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Prod Rep 27(3):343–69

    Google Scholar 

  • Dobretsov S, Abed RM, Voolstra CR (2013) The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling 29(6):617–627

    Article  CAS  PubMed  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54

    Article  CAS  PubMed  Google Scholar 

  • Fabrega J, Zhang R, Renshaw JC, Liu WT, Jamie R (2011) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85:961–966

    Article  CAS  PubMed  Google Scholar 

  • Faÿ F, Linossier I, Peron JJ, Langlois V, Vallée-Rehel K (2007) Antifouling activity of marine paints: study of erosion. Prog Org Coat 60:194–206

    Article  CAS  Google Scholar 

  • Fiedler T, Köller T, Kreikemeyer B (2015) Streptococcus pyogenes biofilms—formation, biology, and clinical relevance. Front Cell Infect Microbiol 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felipe V, Breser ML, Bohl LP, Da Silva ER, Morgante CA, Correa SG, Porporatto C (2019) Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 126:60–67

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Qiu Y, Wang W, Wang X, Ouyang P, Ke C (2013) Antifouling activities of hymenialdisine and debromohymenialdisine from the sponge Axinella sp. Int Biodeterior Biodegrad 85:359–364

    Article  CAS  Google Scholar 

  • Fernandes G, Aparicio VC, Bastos MC, Gerónimo ED, Labanowski J, Prestes OD, Zanella R, dos Santos DR (2019) Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Sci Total Environ 651:1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Fisher WS, Oliver LM, Walker WW, Manning CS, Lytle TF (1999) Decreased resistance of eastern oysters (Crassostrea virginica) to a protozoal pathogen (Perkinsus marinus) after sublethal exposure to tributyltin oxide. Mar Environ Res 47:185–201

    Article  CAS  Google Scholar 

  • Flemming HC, Jost Wingender Szewzyk U, Steinberg P, Scott A (2016) Rice biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AC (1994) Current antifouling technologies. In: Kjelleberg S, Steinberg P (eds) Biofouling: problems and solutions. UNSW, Sydney, pp 44–48

    Google Scholar 

  • Gallimore W (2017) Marine metabolites: oceans of opportunity. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, New York, pp 377–400

    Chapter  Google Scholar 

  • Giaouris EE, Simoes MV (2018) Pathogenic biofilm formation in the food industry and alternative control strategies. In: Holban AM, Grumezescu AM (eds) Handbook of food bioengineering, foodborne diseases, vol 11. Academic Press, New York, pp 309–377

    Google Scholar 

  • Gibbon P (1995) Molluscan shellfisheries in estuaries. In: Earl RC (ed) Marine environmental management: review of events in 1994 and future trends. Candle Cottage, Kempley, Gloucestershire, UK, p 83

    Google Scholar 

  • Grosser K, Zedler L, Schmitt M, Dietzek B, Popp J, Pohnert G (2012) Disruption-free imaging by Raman spectroscopy reveals a chemical sphere with antifouling metabolites around macroalgae. Biofouling 28:687–696

    Article  CAS  PubMed  Google Scholar 

  • Grutsch AA, Nimmer PS, Pittsley RH, McKillip JL (2018) Bacillus spp. as pathogens in the dairy industry. In: Foodborne diseases. Academic Press, Cambridge, MA, 193–211

    Google Scholar 

  • Guerin T, Sirot V, Volatier JL, Leblanc JC (2007) Organotin levels in seafood and its implications for health risk in high seafood consumers. Sci Total Environ 388:66–77

    Article  CAS  PubMed  Google Scholar 

  • Habimana O, Zanoni M, Vitale S, O’Neill T, Xu DSB, Casey E (2018) One particle, two targets: a combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J Colloid Interface Sci 526:419–428

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Dobretsov S, Qian PY (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141

    Article  CAS  Google Scholar 

  • Hashimoto S, Watanabe M, Noda Y, Hayashi T, Kurita Y, Takasu Y, Otsuki A (1998) Concentration and distribution of butyltin compounds in a heavy tanker route in the Strait of Malacca and in Tokyo Bay. Mar Environ Res 45:169–177

    Article  CAS  Google Scholar 

  • Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  CAS  PubMed  Google Scholar 

  • Hong YK, Cho JY (2013) Effect of seaweed epibiotic bacterium Streptomyces violaceoruber SCH-09 on marine fouling organisms. Fish Sci 79:469–475

    Article  CAS  Google Scholar 

  • Hou X, Gao L, Zhendong C, Yin J (2018) Corrosion and protection of metal in the seawater desalination. Earth Environ Sci 108:022037

    Google Scholar 

  • Hung OS, Thiyagarajan V, Wu R (2005) Effects of ultraviolet radiation on films and subsequent settlement of Hydroides elegans. Mar Ecol Prog Ser 304:155–166

    Article  Google Scholar 

  • Inbakandan D, Kumar C, Abraham LS, Kirubagaran R, Venkatesan R, Khan SA (2013) Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Colloid Surf B 111:636–643

    Article  CAS  Google Scholar 

  • Jamal M, Tasneem U, Hussain T, Andleeb S (2015) Bacterial biofilm: its composition, formation and role in human infections. Res Rev J Microbiol Biotechnol 4:3

    Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2017) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11

    Article  PubMed  Google Scholar 

  • Jin C, Xin X, Yu S, Qiu J, Miao L, Feng K (2013) Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington. World J Microbiol Biotechnol 30:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Jordening HJ, Melo LF, Bott TR, Fletcher M, Capdeville B (1992) Anaerobic biofilms in fluidized bed reactors. biofilms—science and technology, NATO ASI Series (Series E: Applied Sciences), vol 223. Springer, Dordrecht

    Google Scholar 

  • Jun JY, Jung MJ, Jeong IH, Yamazaki K, Kawai Y, Kim BM (2018) Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs 16:301

    Article  PubMed Central  CAS  Google Scholar 

  • Kasimanickam RK, Ranjan A, Asokan GV, Kasimanickam VR, Kastelic JP (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomedicine 8:2809–2819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalid HF, Tehseen B, Sarwar Y, Hussain SZ, Khan WS, Raza ZA, Sadia Bajwa Z, Kanaras AG, Hussain I, Rehman A (2019) Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. J Hazard Mater 364:441–448

    Article  CAS  PubMed  Google Scholar 

  • Kelly-Quintos C, Kropec A, Briggs S, Ordonez CL, Goldmann DA, Pier GB (2005) The role of epitope specificity in the human opsonic antibody response to the staphylococcal surface polysaccharide poly N-acetyl glucosamine. J Infect Dis 192(11):2012–2019

    Article  CAS  PubMed  Google Scholar 

  • Kolari M, Nuutinen J, Rainey FA (2003) Salkinoja-Salonen Colored moderately thermophilic bacteria in paper-machine biofilms. J Int Microbiol Biotechnol 30:225

    Article  CAS  Google Scholar 

  • Kon-ya K, Shimidzu N, Otaki N, Yokoyama A, Adachi K, Miki W (1995) Inhibitory effect of bacterial ubiquinones on the settling of barnacle, Balanus amphitrite. Experientia 51:153–155

    Article  CAS  Google Scholar 

  • Kregiel D (2014) Advances in biofilm control for food and beverage industry using organo-silane technology: a review. Food Control 40:32–40

    Google Scholar 

  • Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26(5):471–481

    Article  CAS  PubMed  Google Scholar 

  • Kurzbaum E, Iliasafov L, Kolik L, Jeana Starosvetsky J, Bilanovic D, Butnariu M, Armon R (2019) The titanic and other shipwrecks to biofilm prevention: the interesting role of polyphenol-protein complexes in biofilm inhibition. Sci Total Environ 658:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Kwong TFN, Miao L, Li X, Qian PY (2006) Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar Biotechnol 8:634–640

    Article  CAS  Google Scholar 

  • Lamas A, Paz-Mendez AM, Regal P, Vazquez B, Miranda JM, Cepeda A, Franco CM (2018) Food preservatives influence biofilm formation, gene expression and small RNAs in Salmonella enterica. LWT 97:1–8

    Article  CAS  Google Scholar 

  • Lau SCK, Harder T, Qian PY (2003) Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): Role of bacterial extracellular polymers. Biofouling 19:197–204

    Article  CAS  PubMed  Google Scholar 

  • Leetanasaksakul K, Thamchaipenet A (2018) Potential anti-biofilm producing marine actinomycetes isolated from sea sediments in Thailand. Agric Nat Resour 52(3):228–233

    Google Scholar 

  • Laxmi M, Bhat SG (2018) Mitigation using bacteriophage. In: Holban AM, Grumezescu AM (eds) Handbook of food bioengineering, advances in biotechnology for food industry. Academic Press, New York, pp 393–423

    Google Scholar 

  • Lee AK, Newman DK (2003) Microbial iron respiration: Impact on corrosion processes. Appl Microbiol Biotechnol 62:134–139

    Article  CAS  PubMed  Google Scholar 

  • Lekka M, Kouloumbi N, Gajo M, Bonora PL (2005) Corrosion and wear resistant electrodeposited composite coatings. Electrochim Acta 50:4551–4556

    Article  CAS  Google Scholar 

  • Lewin R (1984) Microbial adhesion is a sticky problem. Science 224:375–377

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xu Y, Shao CL, Yang RY, Zheng CJ, Chen YY, Fu XM, Qian PY, She ZG, de Voogd NJ (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Wu HX, Xu Y, Shao CL, Wang C, Qian PY (2013) Antifouling activity of secondary metabolites isolated from Chinese marine organisms. Mar Biotechnol 15:552–558

    Article  CAS  Google Scholar 

  • Li K, Yang G, Debru AB, Li P, Zong L, Li P, Bao Q (2017) SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling. Front Microbiol 8:1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi X (2009) Electrochemical chloride extraction and electrochemical injection of corrosion inhibitor in concrete: state of the knowledge. Corros Rev 27:53–82

    Article  Google Scholar 

  • Liu QA, Shao CL, Gu YC, Blum M, Gan LS, Wang KL, Chen M, Wang CY (2014) Antifouling and fungicidal resorcylic acid lactones from the Sea Anemone-derived fungus Cochliobolus lunatus. J Agric Food Chem 62:3183–3191

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Guo Z, Zeng Z, Guo N, Lei Y, Liu T, Sun S, Chang X, Yin Y, Wang X (2018) Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization. ACS Appl Mater Interfaces 10:40317–40327

    Article  CAS  PubMed  Google Scholar 

  • López D, Vlamakis H, Kolter R (2020) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398

    Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Liu P, Zhang Y, Cao S, Li D, Chen W (2010) Inhibition of spore germination of Ulva pertusa by the marine bacterium Pseudoalteromonas haloplanktis CI4. Acta Oceanol Sin 29:69–78

    Article  Google Scholar 

  • Mackowiak M, Leifels M, Hamza IA, Jurzik L, Wingender J (2018) Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany. Sci Total Environ 626:650–659

    Article  CAS  PubMed  Google Scholar 

  • Magin CM, Cooper SP, Brennan AB (2010) Non-toxic antifouling strategies. Dent Mater 13:36–44

    CAS  Google Scholar 

  • Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Maki JS, Rittschof D, Schmidt AR (1989) Factors controlling adhesion of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biol Bull 177:295–302

    Article  Google Scholar 

  • Malini M, Thirumavalavan M, Yang WY, Lee JF, Annadurai G (2015) A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int J Biol Macromol 80:121–129

    Article  CAS  PubMed  Google Scholar 

  • Marhaeni B, Radjasa OK, Khoeri M, Sabdono A, Bengen DG, Sudoyo H (2011) Antifouling activity of bacterial symbionts of seagrasses against marine biofilm-forming bacteria. J Environ Prot 2:1245–1249

    Article  Google Scholar 

  • Maureen EC, Robert F (1994) The influence of low surface energy materials on bioadhesion—a review. Int Biodeterior Biodegrad 34:333–348

    Article  Google Scholar 

  • Meireles A, Borges A, Giaouris E, Simões M (2016) The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int 86:140–146

    Article  CAS  Google Scholar 

  • Merino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA (2019) Biofilm formation by Salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Res Int 119:530–540

    Article  PubMed  Google Scholar 

  • Mohankandhasamy R, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Bio Med Res Int 2016:1851242

    Google Scholar 

  • Moradi M, Sun Z, Song Z, Hu Z (2019) Effect of proteases secreted from a marine isolated bacterium Bacillus vietnamensis on the corrosion behaviour of different alloys. Bioelectrochemistry 126:64–71

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microb Ecol 68(1):1–12

    Google Scholar 

  • Murthy SP, Venkatesan R (2008) Industrial biofilms and their control. In: Springer series on biofilms. Springer, Berlin, Heidelberg

    Google Scholar 

  • Muthukumar K, Vignesh S, Dahms HU, Gokul MS, Palanichamy X, Subramian G, James RA (2015) Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. Mar Pollut Bull 101:816–825

    Article  CAS  Google Scholar 

  • Neagu L, Cirstea DM, Curutiu C, Mitache MM, Lazăr V, Chifiriuc MC (2017) Microbial biofilms from the aquatic ecosystems and water quality. In: Grumezescu AM (ed) Water purification. Academic Press, New York, pp 621–642

    Chapter  Google Scholar 

  • Nong XH, Zheng ZH, Zhang XY, Lu XH, Qi SH (2013) Polyketides from amarine-derived fungus Xylariaceae sp. Mar Drugs 11:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurioglu AG, Esteves AC, de With G (2015) Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B 3:6547–6570

    Article  CAS  PubMed  Google Scholar 

  • Okino T, Yoshimura E, Hirota H, Fusetani N (1996a) Antifouling kalihinenes from the marine sponge Acanthella cavernosa. Tetrahedron Lett 36:8637–8640

    Article  Google Scholar 

  • Okino T, Yoshimura E, Hirota H, Fusetani N (1996b) New antifouling kalihipyrans from the marine sponge Acanthella cavernosa. J Nat Prod 59:1081–1083

    Article  CAS  Google Scholar 

  • Olguin-Uribe G, Abou-Mansour E, Boulander A, Debard H, Francisco C, Combaut G (1997) 6-bromoindole-3-carbaldehyde, from an Acinetobacter sp. bacterium associated with the ascidian Stomozoa murrayi. J Chem Ecol 23(11):2507–2521

    Article  CAS  Google Scholar 

  • Omae I (2003) Organotin antifouling paints and their alternatives. Appl Organomet Chem 17:81–105

    Article  CAS  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  CAS  PubMed  Google Scholar 

  • Palimi MJ, Alibakhshi E, Ramezanzadeh B, Bahlakeh G, Mahdavian M (2018) Screening the anti-corrosion effect of a hybrid pigment based on zinc acetyl acetonate on the corrosion protection performance of an epoxy-ester polymeric coating. J Taiwan Inst Chem Eng 82:261–272

    Article  CAS  Google Scholar 

  • Pang X, Wong C, Chung H, Yuk H (2019) Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control 98:200–208

    Article  CAS  Google Scholar 

  • Pasmore M, Marion K (2008) Biofilms in hemodialysis. In: The role of biofilms in device-related infections. Springer, Berlin/Heidelberg, pp 167–192

    Google Scholar 

  • Pedersen A, Hermanson M (1991) Bacterial corrosion of iron in seawater in situ and in aerobic and anaerobic model systems. FEMS Microbiol Ecol 86:139–148

    Article  CAS  Google Scholar 

  • Per RJ, Kent MB, Ann IL (2004) Linking larval supply to recruitment: flow-mediated control of initial adhesion of barnacle larvae. Ecology 85:2850–2859

    Article  Google Scholar 

  • Phull B, Abdullahi AA (2017) Marine corrosion, Reference module in materials sciences and material engineering

    Google Scholar 

  • Piqué G, Vericat D, Sabater S, Batalla RJ (2016) Effects of biofilm on river-bed scour. Sci Total Environ 572:1033–1046

    Article  PubMed  CAS  Google Scholar 

  • Prabhakaran S, Rajaram R, Balasubramanian V, Mathivanan K (2012) Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pac J Trop Biomed 2:316–322

    Article  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017a) Nanotechnology: an agriculture paradigm. Springer Nature Singapore Pte Ltd., Singapore. ISBN: 978-981-10-4573-8

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017b) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd., Singapore. ISBN 978-981-10-4678-0

    Book  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer International Publishing, New York. ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer Nature Singapore Pte Ltd., Singapore. ISBN 978-981-10-8666-3 https://www.springer.com/gb/book/9789811086656

    Book  Google Scholar 

  • Price RR, Patchan M, Clare AS, Rittschof D, Bonaventura J (1994) Performance enhancement of natural antifouling compounds and their analogs through microencapsulation and controlled release. In: Thompson M-F, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. A ABalkema, Rotterdam, pp 321–334

    Google Scholar 

  • Proia L, Schiller DV, Melsio AS, Sabater S, Borrego CM, Mozaz SR, Balcázar JL (2016) Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ Pollut 210:121–128

    Article  CAS  PubMed  Google Scholar 

  • Pugazhendhi E, Kirubha P, Palanisamy K, Gopalakrishnan R (2015) Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Appl Surf Sci 357:1801–1808

    Article  CAS  Google Scholar 

  • Qasim (1999) The Indian ocean: images and realities. Oxford and IBH, New Delhi, pp 57–90

    Google Scholar 

  • Qi SH, Ma X (2017) Antifouling compounds from marine invertebrates. Mar Drugs 15:263

    Article  PubMed Central  CAS  Google Scholar 

  • Qi SH, Zhang S, Yang LH, Qian PY (2008) Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracilis. Nat Prod Res 22:154–166

    Article  CAS  PubMed  Google Scholar 

  • Qian PYXY, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  CAS  PubMed  Google Scholar 

  • Qian PY, Li Z, Xu Y, Li Y, Fusetani N (2015) Mini-review: marine natural products and their synthetic analogs as antifouling compounds. Biofouling 31:101–122

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Bruchert V, Amann J, Konneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 2:409–417

    Article  Google Scholar 

  • Rajan R, Selvaraj M, Subramanian G (2016) Studies on the anticorrosive and antifouling properties of the Gracilaria edulis extract incorporated epoxy paint in the Gulf of Mannar Coast, Mandapam. India. Prog Org Coat 90:448–454

    Article  CAS  Google Scholar 

  • Rajivgandhi G, Vijayan R, Maruthupandy M, Vaseeharan B, Manoharan N (2018) Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb Pathog 118:190–198

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar VR, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD (2017) Biofabrication and characterization of silver nanoparticles using aqueous extracts of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst) 14:1–7

    Article  Google Scholar 

  • Rao D, Webb JS, Holmstrom C, Case R, Low A, Steinberg P (2007) Low densities of epiphytic bacteria from the marine alga Ulva australis Inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BMRI 2015: Article ID 759348

    Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023

    CAS  PubMed  Google Scholar 

  • Rittschof D, Clintock JB, Baker BJ (eds) (2001) Natural product antifoulants and coatings development. In Marine chemical ecology. Taylor and Francis, Abingdon, UK, pp 543–566

    Google Scholar 

  • Roberts JL, Khan S, Emanuel C, Powell LC, Pritchard MF, Onsoyen E, Myrvold R, Thomas DW, Hill KE (2013) An in vitro study of alginate oligomer therapies on oral biofilms. J Dent 41:892

    Article  CAS  PubMed  Google Scholar 

  • Rubini D, Banu SF, Nisha P, Murugan R, Thamotharan S, Percino MJ et al (2018) Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microb Pathog 122:162–173

    Article  CAS  PubMed  Google Scholar 

  • Sadekuzzaman M, Yang S, Mizan M, Ha S (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14:491–509

    Article  Google Scholar 

  • Saha A, Yadav R, Rajendran N (2014) Biomaterials from sponges, ascidians and other marine organisms. Int J Pharm Sci Rev Res 27:100–109

    CAS  Google Scholar 

  • Saji V, Thomas J (2007) Nano-materials for corrosion control. Curr Sci 92:51–55

    CAS  Google Scholar 

  • Salta M, Wharton JA, Blache Y, Stokes KR, Francois J (2013a) Briand marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 15:2879–2893

    PubMed  Google Scholar 

  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF (2013b) Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 15:2879–2893

    PubMed  Google Scholar 

  • Salta M, Wharton JA, Dennington SP, Stoodley P, Stoke KR (2013c) Anti-biofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci 14:21757–22178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarro MI, Garcia AM, Moreno DA (2005) Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water. Int Microbiol 8:223–230

    CAS  PubMed  Google Scholar 

  • Sarro MI, García AM, Moreno DA (2007) Development and characterization of biofilms on stainless steel and titanium in spent nuclear fuel pools. J Ind Microbiol Biotechnol 34:433–441

    Article  CAS  PubMed  Google Scholar 

  • Sathe P, Myint MTZ, Dobretsov S, Dutta J (2016) Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. Biofouling 32:383–395

    Article  CAS  PubMed  Google Scholar 

  • Satheesh S, Soniyamby AR, Sunjaiy Shankar CV, Punitha SMJ (2012) Antifouling activities of marine bacteria associated with the sponge (Sigmodocia sp). J Ocean Univ China 11:354–360

    Article  CAS  Google Scholar 

  • Satheesh S, Ba-akdah MA, Al-Sofyani A (2016) Natural antifouling compound production by microbes associated with marine macroorganisms—a review. Electron J Biotechnol 21:26–35

    Article  CAS  Google Scholar 

  • Santos ALSD, Galdino ACM, Mello TPD, Ramos LDS, Branquinha MH, Bolognese AM et al (2010) What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz 113(9)

    Google Scholar 

  • Sayem SA, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A et al (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Factories 10(1):74

    Article  CAS  Google Scholar 

  • Schultz M, Holm BJ, Hertel W (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    Article  CAS  PubMed  Google Scholar 

  • Schwartz N, Dobretsov S, Rohde S, Schupp PJ (2017) Comparison of antifouling properties of native and invasive Sargassum (Fucales, Phaeophyceae) species. Eur J Phycol 52:116–131

    Article  Google Scholar 

  • Scopel M, Abraham WR, Antunes AL, Henriques AT, Macedo AJ (2014) Mevalonolactone: an inhibitor of staphylococcus epidermidis adherence and biofilm formation. Med Chem 10:246–251

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Jia Dao W, Hao Sheng C, DaRong C (2011) Progress of marine biofouling and antifouling technologies. Chin Sci Bull 56:598–612

    Article  CAS  Google Scholar 

  • Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VC, Arvindnarayan S, Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzym Microb Technol 95:28–44

    Article  CAS  Google Scholar 

  • Shao CL, Wang CY, Wei MY, Gu YC, She ZG, Qian PY, Lin YC (2011a) Aspergilones A and B, two benzylazaphilones with an unprecedented carbon skeleton from the gorgonian-derived fungus Aspergillus sp. Bioorg Med Chem Lett 21:690–693

    Article  CAS  PubMed  Google Scholar 

  • Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC, Zheng CJ, She ZG, Lin YC (2011b) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629–633

    Article  CAS  PubMed  Google Scholar 

  • Shao CH, Xu RF, Wang CY, Qian PY, Wang KL, Wei MY (2015) Potent antifouling marine dihydroquinolin-2(1H)-one-containing alkaloids from the gorgonian coral-derived fungus Scopulariopsis sp. Mar Biotechnol 17:408–415

    Article  CAS  Google Scholar 

  • Shen GX, Chen YC, Lin CJ (2005) Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489:130–136

    Article  CAS  Google Scholar 

  • Shi X, Zhu X (2009a) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413

    Article  CAS  Google Scholar 

  • Shi X, Zhu X (2009b) Biofilm formation and food safety in food industry. Trends Food Sci Technol 20:407–413

    Article  CAS  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silkina A, Bazes A, Mouget JL, Bourgougnon N (2012) Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. Mar Pollut Bull 64:2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Simon SF, Duprilot M, Mayer N, García V, Alonso MP, Blanco J, Nicolas-Chanoine MH (2019) Association between kinetic of early biofilm formation and clonal lineage in Escherichia Coli. Front Microbiol 10:1183

    Article  Google Scholar 

  • Silva ER, Ferreira O, Ramalho PA, Azevedo NF, Bayón R, Igartua A, Bordado JC, Calhorda MJ (2019) Eco-friendly non-biocide-release coatings for marine biofouling prevention. Sci Total Environ 650:2499–2511

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JC, Ferreira IC, Vahabi K (2017) Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 37:525–540

    Article  CAS  PubMed  Google Scholar 

  • Srey S, Jahid IJ, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Article  Google Scholar 

  • Stewart C, Thompson JAJ (1997) Vertical distribution of butyltin residues in sediments of British Columbia harbours. Environ Technol 18:175–202

    Article  Google Scholar 

  • Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580

    Article  CAS  PubMed  Google Scholar 

  • Suntharalingam P, Cvitkovitch DG (2005) Quorum sensing in streptococcal biofilm formation. Trends Microbiol 13:3–6

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Su M, Leonhard M, Moser D, Greta M, Haselmann Wang J, Eder D, Stickler BS (2018) Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr Polym 200:35–42

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Flint BSH, Brooks JD (2010) The efficacy of different cleaners and sanitisers in cleaning biofilms on UF membranes used in the dairy industry. J Membr Sci 352:71–75

    Article  CAS  Google Scholar 

  • Tarifa MC, Jorge E, Brugnoni LLI (2018) Disinfection efficacy over yeast biofilms of juice processing industries. Food Res Int 105:473–481

    Article  CAS  PubMed  Google Scholar 

  • Tello E, Castellanos L, Arevalo-Ferro C, Rodríguez J, Jiménez C, Duque C (2011) Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones. Tetrahedron 67:9112–9121

    Article  CAS  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Karutha Pandian S (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Mic 57(3):284–294

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1997) Antifouling terpenes and steroids against barnacle larvae from marine sponges. Biofouling 11:283–291

    Article  CAS  Google Scholar 

  • Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K (2014) Omaezallene from red alga Laurencia sp.: structure elucidation, total synthesis, and antifouling activity. Angew Chem Int Ed 53:3909–3912

    Article  CAS  Google Scholar 

  • Van Wezel AP, van Wlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444

    Article  PubMed  CAS  Google Scholar 

  • Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S (2018) Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 77:494–506

    Article  CAS  PubMed  Google Scholar 

  • Videla HA, Characklis WG (1992) Biofouling and microbially influenced corrosion. Int Biodeterior Biodegrad 29:195–212

    Article  CAS  Google Scholar 

  • Vietti P (2009a) New hull coatings for navy ships cut fuel use, protect environment. Office of Naval Research, Accessed 6 Feb 2019

    Google Scholar 

  • Vietti P (2009b) New hull coatings cut fuel use, protect environment (PDF). Currents: 36–38. _New_Hull_Coatings.pdf. Accessed 6 Feb 2019

    Google Scholar 

  • Vuotto C, Longo F, Pascolini C, Donelli G, Libori MF, Tiracchia V, Salvia A, Varaldo PE (2017) Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 123:1003–1018

    Article  CAS  PubMed  Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: Ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:2

    Article  CAS  Google Scholar 

  • Walt DR, Smulow JB, Turesky SS et al (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336

    Article  CAS  Google Scholar 

  • Wang J, Lin J, Zhang Y, Zhang J, Feng T, Li H, Wang Y (2019) Activity improvement and vital amino acid identification on the marine-derived quorum quenching enzyme MomL by protein engineering. Mar Drugs 17(5):300

    Article  CAS  PubMed Central  Google Scholar 

  • Wang KL, Xu Y, Lu L, Li Y, Han Z, Zhang J (2015) Low-toxicity diindol-3-ylmethanes as potent antifouling compounds. Mar Biotechnol 17:624–632

    Article  CAS  Google Scholar 

  • Wang H, Wang H, Xing T, Wu N, Xu X, Zhou G (2016a) Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT-Food Sci Technol 66:298–304

    Article  CAS  Google Scholar 

  • Wang X, Huang Y, Sheng Y, Su P, Qiu Y, Ke C, Feng D (2016b) Antifouling activity towards mussel by small-molecule compounds from a strain of Vibrio alginolyticus bacterium associated with sea anemone Haliplanella sp. J Microbiol Biotechnol 27:460–470

    Article  CAS  Google Scholar 

  • Wang H, Qi J, Dong Y, Li Y, Xu X, Zhou G (2017a) Characterization of attachment and biofilm formation by meat-borne Enterobacteriaceae strains associated with spoilage. LWT 86:399–340

    Article  CAS  Google Scholar 

  • Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y (2017b) Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Mar Drugs 15:266

    Article  PubMed Central  CAS  Google Scholar 

  • Wang H, Teng F, Yang X, Guo X, Tu J, Zhang C (2017c) Colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138

    Google Scholar 

  • Wansah JF, Udounwa AE, Ahmed AD, Essiett AA, Jackson EU (2014) Application of nanotechnology in the corrosion protection of steel oil pipes. Proceedings of the 1st African International Conference/Workshop on Applications of Page 103 Nanotechnology to Energy, Health and Environment, UNN, March

    Google Scholar 

  • Willemsen PR, Ferrari GM (1993) The use of anti-fouling compounds from sponges in anti-fouling paints. Surface Coat Int 10:423–427

    Google Scholar 

  • Xing Q, Gan LS, Mou XF, Wang W, Wang CY, Wei MY, Shao CL (2016) Isolation, resolution and biological evaluation of pestalachlorides E and F containing both point and axial chirality. RSC Adv 6:22653–22658

    Article  CAS  Google Scholar 

  • Xu Y, Li H, Li X, Xiao X, Qian PY (2009) Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete hydroides elegans. Mar Biotechnol 11:495–504

    Article  CAS  Google Scholar 

  • Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H, Xiao X, Qian PY (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol 101:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Jia R, Li Y (2017) Advances in the treatment of problematic industrial biofilms World. J Microbiol Biotechnol 33:97

    Article  CAS  Google Scholar 

  • Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang KL (2007) Effect of culture conditions on antifouling compound production of a sponge-associated fungus. Appl Microbiol Biotechnol 74:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S (2016a) The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling 32:763–777

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Li YF, Liang X, Guo XP, Ding DW, Zhang D, Zhou S, Bao WY, Bellou N, Dobretsov S (2016b) Silver nanoparticles impact biofilm communities and mussel settlement. Sci Rep 6:37406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology- past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Zheng CJ, Shao CL, Wu LY, Chen M, Wang KL, Zhao DL (2013) Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans. Mar Drugs 11:2054–2068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu XY, Lubeck J, Kilbane JJ (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:5354–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurob E, Dennett G, Gentil D, Montero-Silva F, Gerber U, Naulín P, Ramírez C (2019) Inhibition of wild Enterobacter cloacae biofilm formation by nanostructured graphene-and hexagonal boron nitride-coated surfaces. Nano 9(1):49

    Google Scholar 

Download references

Acknowledgments

Author MJ thanks the AMET deemed to be university for facilities and encouragement. Author MS thanks Centre of Biotechnology of Sfax for support. Author RS thanks University of South Pacific for support and facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayaprakashvel, M., Sami, M., Subramani, R. (2020). Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_10

Download citation

Publish with us

Policies and ethics