Skip to main content

Phytoremediation of Heavy Metals Using Salix (Willows)

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 2

Abstract

The rise of different heavy metals in different ecosystems is a cause of concern as it may deteriorate the quality of these ecosystems. The increase in these metals may reach to different organisms by a process of bioaccumulation that may cause various deleterious effects in humans. Hence, researchers have used different mechanisms to remove these pollutants from these ecosystems. Phytoremediation is considered a safe and eco-friendly mechanism to restore these ecosystems. Among the different species, Salix spp. is considered a potent tool to remove the heavy metals from the most spoiled sites by natural mechanisms. This chapter reviews the ecology, ecological niches and phytoremediation characteristics of Salix spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasamaa K, Heinsoo K, Holm B (2010) Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass Bioenergy 34(6):897–905

    Article  CAS  Google Scholar 

  • Agegnehu G, Bass A, Nelson P, Bird M (2016) Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Tripathi RD, Rai UN, Pal A, Singh SP (1999) Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere 39(12):2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss.: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70:462–469

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad M (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Argus GW (1986) The genus Salix (Salicaceae) in the Southeastern United States. Syst Bot Monogr 9:170

    Article  Google Scholar 

  • Argus GW (1997) Infrageneric classification of Salix (Salicaceae) in the New World. Syst Bot Monogr 52:121

    Article  Google Scholar 

  • Bajraktari D, Biljana B, Zoran K, Lulzim Z (2019) Environmental pollution and heavy metals accumulation in Salix alba L. (Fam. Salicaceae), along the river stream of Sitnica. Agric Conspec Sci 84:95–101

    Google Scholar 

  • Bates J (1951) Trailside botany. Pfeifer-Hamilton, Duluth, p 227

    Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles J (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 189–209

    Google Scholar 

  • Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18(4):553–561

    Google Scholar 

  • Boyter MJ, Brummer JE, Leininger WC (2009) Growth and Metal Accumulation of Geyer and Mountain Willow Grown in Topsoil versus Amended Mine Tailings. Water Air Soil Pollut 198 (1–4):17–29

    Google Scholar 

  • Bungart R, Huttl RF (2001) Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass Bioenergy 20:181–187

    Article  CAS  Google Scholar 

  • Clewell A (1999) Restoration of riverine forest at hall branch on phosphate-mined land, Florida. Restor Ecol 7(1):1–14

    Article  Google Scholar 

  • Corseuil HX, Moreno FN (2001) Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Res 35(12):3013–3017

    Article  CAS  PubMed  Google Scholar 

  • Dickinson NM, Punshon T, Hodkinson RB, Lepp NW (1994) Metal tolerance and accumulation in willows. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewater and sludges. Swedish University of Agricultural Sciences, Uppsala, pp 121–127

    Google Scholar 

  • Dorn RD (1976) A synopsis of American Salix. Canadian J Bot 54:2769–2789

    Article  Google Scholar 

  • Ebbs S, Bushey J, Poston S, Kosma D, Samiotakis M, Dzombak D (2003) Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant Cell Environ 26:1467–1478

    Article  CAS  Google Scholar 

  • Elowson S, Christersson L (1994) Purification of groundwater using biological filters. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewater and sludges. Swedish University of Agricultural Sciences, Uppsala, pp 219–223

    Google Scholar 

  • Eltrop L, Brown G, Joachim O, Brinkmann K (1991) Lead tolerance of Betula and Salix in the mining area of Mechernich/Germany. Plant Soil 131:275–285

    Article  CAS  Google Scholar 

  • Eriksson J, Ledin S (1999) Changes in phytoavailability and concentration of cadmium in soil following long term Salix cropping. Water Air Soil Pollut 114:171–184

    Article  CAS  Google Scholar 

  • FAO (1979) Poplar and willows in wood production and land use, Forestry series no. 10

    Google Scholar 

  • Granel T, Robinson B, Mills T, Clothier B, Green S, Fung L (2002) Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation. Aust J Soil Res 40(8):1331–1337

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediation 1(2):115–123

    Article  CAS  Google Scholar 

  • Hartwright TU (1960) Planting trees and shrubs in gravel working. Sand and Gravel Association of Great Britain, London, p 72

    Google Scholar 

  • Hightshoe G (1998) Native trees, shrubs and vines for urban and rural America. Wiley, New York, p 819

    Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1995) Phytoremediation using green plants to clean up contaminated soil, groundwater, and wastewater. Argonne National Laboratory Hinchman, Applied Natural Sciences, Inc., Hamilton. http://www.treemediation.com/Technical/Phytoremediation_1998.pdf

    Google Scholar 

  • Hossain M, Strezov V, Yin Chan K, Nelson P (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9):1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ Manag 162:275–289

    Article  CAS  Google Scholar 

  • Justin M, Pajk N, Zupanc V, Zupančič M (2010) Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Manag 30(6):1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Kennedy CEJ, Southwood TRE (1984) The number of species of insects associated with British trees; a re-analysis. J Animal Ecol 53:455–478

    Article  Google Scholar 

  • Kirt E (1994) Vegetation filter experiment in Estonia. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewater and sludges. Swedish University of Agricultural Sciences, Uppsala, pp 79–82

    Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249:127–137

    Article  CAS  Google Scholar 

  • Klang-Westin E, Perttu K (2002) Effect of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass Bioenergy 23:415–426

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Wimmer B, Buecker J, Rempt F, Soja G (2014) Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci 177(1):3–15

    Article  CAS  Google Scholar 

  • Kowalik PJ, Randerson PF (1994) Nitrogen and phosphorus removal by willow stands irrigated with municipal waste water—a review of the Polish experience. Biomass and Bioenergy 6(1–2):133–139

    Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Soil compaction and flooding effects on the growth of twelve Salix L. species. J Environ Hort 22:155–160

    Google Scholar 

  • Landberg T, Greger M (1994) Cadmium tolerance in Salix. Biol Plant 361:280

    Google Scholar 

  • Landberg T, Greger M (2002) Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J Plant Physiol 159:69–75

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    Article  CAS  PubMed  Google Scholar 

  • Lebrun M, Macri C, Miard F, Hattab-Hambli N, MotelicaHeino M, Morabito D, Bourgerie S (2017) Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochem Explor 182:149–156

    Article  CAS  Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endo-and ectomycorrhizae in Populus and Salix. Plant Soil 117:243–253

    Article  Google Scholar 

  • Logan TJ (1992) Reclamation of chemically degraded soils. Adv Soil Sci 17:13–35

    Article  CAS  Google Scholar 

  • Lunackova L, Masarovicova E, Kral’ova K, Stresko V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull Environ Contam Toxicol 70:576–585

    Article  CAS  PubMed  Google Scholar 

  • Marius B, Gabriela B, Cristina M, Nicolescu A, Irina G, Ivona D, Costel B (2017) Influence of lead toxicity on growth and antioxidant enzyme activity for Salix Alba offshoots in hydroponic cultures with different levels of pollutants. J Sci Arts 4(41):803–814

    Google Scholar 

  • Maroder HL, Prego IA, Facciuto GR, Maldonado SB (2000) Storage behaviour of Salix alba and Salix matsudana seeds. Ann Bot 86:1017–1021

    Article  Google Scholar 

  • Martin JF, Reddy KR (1997) Interaction and spatial distribution of wetland nitrogen processes. Ecol Model 105:1–21

    Article  Google Scholar 

  • Maurice C, Ettala M, Lagerkvist A (1999) Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water Air Soil Pollut 113:203–216

    Article  CAS  Google Scholar 

  • McLeod KW, McPherson JK (1973) Factors limiting the distribution of Salix nigra. Bull Torrey Bot Club 100:102–110

    Article  Google Scholar 

  • Mertens J, Luyssaert S, Verbeeren S, Vervaeke P, Lust N (2001) Cd and Zn concentrations in small mammals and willow leaves on disposal facilities for dredged material. Environ Pollut 115:17–22

    Article  CAS  PubMed  Google Scholar 

  • Meiman PJ, Davis NR, Brummer JE, Ippolito JA (2012) Riparian shrub metal concentrations and growth in amended fluvial mine tailings. Water Air Soil Pollut 223(4):1815–1828

    Google Scholar 

  • Mleczek M, Magdziak Z, Rissmann I, Golinski P (2009) Effect of different soil conditions on selected heavy metal accumulation by Salix viminalis tissues. J Environ Sci Health A 44(14): 1609–1616

    Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass and Bioenergy, 34(9):1410–1418

    Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biotechnol 1(1):5–11

    Google Scholar 

  • Omondi M, Xia X, Nahayo A, Liu X, Korai P, Pan G (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28–34

    Article  CAS  Google Scholar 

  • Park J, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung J (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185(2–3):549–574

    Article  CAS  PubMed  Google Scholar 

  • Perttu KL, Kowalik PJ (1997) Salix vegetation filters for purification of water and soils. Biomass Bioenergy 12(1):9–19

    Article  CAS  Google Scholar 

  • Popoviciu DR, Ticuţa N (2018) Copper, manganese and zinc bioaccumulation in three common woody species from black sea coastal area. UPB Sci Bull Ser B 80(2):49–56

    Google Scholar 

  • Pulford D, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4(1):59–72

    Article  CAS  Google Scholar 

  • Puckett EE, Serapiglia MJ, DeLeon AM, Long S, Minocha R, Smart LB (2012) Differential expression of genes encoding phosphate transporters contributes to arsenic tolerance and accumulation in shrub willow (Salix spp.). Environ Exp Bot 75:248–257

    Google Scholar 

  • Punshon T, Dickinson N (1997) Acclimation of Salix to metal stress. New Phytol 137:303–314

    Article  CAS  PubMed  Google Scholar 

  • Punshon T, Jackson BP, Lanzirotti A, Hopkins WA, Bertsch PM, Burger J (2005) Application of synchrotron X‐ray microbeam spectroscopy to the determination of metal distribution and speciation in biological tissues. Spectrosc Lett 38(3):343–363

    Google Scholar 

  • Purdy JJ, Smart LB (2008) Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int J Phytoremediation 10(6):515–528

    Google Scholar 

  • Raven JA (1992) The physiology of Salix. In: Watling R, Raven JA (eds) 1992 willow symposium. Proceedings of the Royal Society of Edinburgh, vol 98. The Royal Society of Edinburgh, Edinburgh, pp 49–62

    Google Scholar 

  • Riddell-Black D (1994) Sewage sludge as a fertilizer for short rotation energy coppice. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewater and sludges. Swedish University of Agricultural Sciences, Uppsala, pp 91–100

    Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Rosenqvist H, Aronsson P, Hasselgren K, Perttu K (1997) Economics of using municipal wastewater irrigation of willow coppice crops. Biomass Bioenergy 12(1):1–8

    Article  Google Scholar 

  • Scheirlink H, Lust N, Nachtergale L (1996) Transpiration of two willow species (Salix viminalis and Salix triandra) growing on a landfill of dredged sludge. Silva Gandav 61:33–45

    Google Scholar 

  • Schramm JR (1966) Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Trans Am Phil Soc N S 56:6–194

    Google Scholar 

  • Sennerby-Forsse L, Melin J, Rosen K, Siren G (1993) Uptake and distribution of radiocesium in fast-growing Salix viminalis L. J Sustain For 1(3):93–103

    Article  Google Scholar 

  • Shanahan JO, Brummer JE, Leininger WC, Paschke MW (2007) Manganese and zinc toxicity thresholds for mountain and Geyer willow. Int J Phytoremediation 9(5):437–452

    Google Scholar 

  • Singh DV, Bhat JIA, Bhat RA, Dervash MA, Ganei SA (2018) Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ Monit Assess 190:353. https://doi.org/10.1007/s10661-018-6731-2

    Article  CAS  PubMed  Google Scholar 

  • Skvortsov AK (1999) Willows of Russia and adjacent countries. Taxonomical and geographical review. Univ Joensuu Fac Math Nat Sci. Rept Ser 39:307

    Google Scholar 

  • Smith FF, Smith DK, Argus GW (1978) ‘Willows for pleasure and benefit’, Amer. Horticulture 57(2):22–25

    Google Scholar 

  • Sommerville AHC (1992) Willows in the environment. In: Watling R, Raven JA (eds) 1992 willow symposium. Proceedings of the Royal Society of Edinburgh, vol 98. The Royal Society of Edinburgh, Edinburgh, pp 215–225

    Google Scholar 

  • Stott KG (1992) Willows in the service of man. In: Watling R, Raven JA (eds) 1992 willow symposium. Proceedings of the Royal Society of Edinburgh, vol 98. The Royal Society of Edinburgh, Edinburgh, pp 169–182

    Google Scholar 

  • Thompson W (1998) Botanical remedies. Landsc Archit 8:38–43

    Google Scholar 

  • van der Heijden EW, Kuyper THW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680

    Article  Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P, Vos BD, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58(8):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Vervaeke P, Tack FMG, Lust N, Verloo M (2004) Short- and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment. J Environ Qual 33(3):976–983

    Article  CAS  PubMed  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation – green for environmental clean. In: The 12th world lake conference. pp. 1016–1021

    Google Scholar 

  • Vyslouzilova M, Tlustos P, Szakova J, Pavlikova D (2003) As, Cd, Pb and Zn uptake by Salix spp. clones grown in soil enrich by high load of this elements. Plant Soil Environment 49(5):191–196

    Article  CAS  Google Scholar 

  • Watson C, Pulford ID, Riddell-Black D (2003) Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int J Phytoremediation 5(4):333–349

    Article  CAS  PubMed  Google Scholar 

  • White JEJ (1992) Ornamental uses of willow in Britain. In: Watling R, Raven JA (eds) 1992 willow symposium. Proceedings of the Royal Society of Edinburgh, vol 98. The Royal Society of Edinburgh, Edinburgh, pp 183–192

    Google Scholar 

  • Wielgosz E (2000) Aktywnosc biochemiczna w osadach posciekowych poddanych czteroletniej transformacji roslinnej. Annales Universitatis Mariae Curiie-Sklodowska LV 20:185–193

    Google Scholar 

  • Zalesny Jr, RS, Bauer EO (2007) Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation. Int J Phytoremediation 9(6):497–511

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, K.A., Sofi, Z.M., Malik, J.A., Wani, J.A. (2020). Phytoremediation of Heavy Metals Using Salix (Willows). In: Bhat, R., Hakeem, K., Dervash, M. (eds) Bioremediation and Biotechnology, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-40333-1_9

Download citation

Publish with us

Policies and ethics