Skip to main content

Bio-Pesticides: Application and Possible Mechanism of Action

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 2

Abstract

Bio-pesticides, envelops a wide range of entomopathogenic microbial pesticides, plant secondary metabolites and other important sources which have potential to replace synthetic pesticides. The improvements in microbial vermin control incorporate the usage of bacteria, fungi, protozoa, and nematode species that may aggressively repress the development of pathogenic and toxigenic miniaturized scale life forms on significant horticultural wares. Bio-pesticide items are currently accessible economically for the control of vermin and maladies. The main focus of bio-pesticide research is to make these bio-pesticide products accessible at farm level at a reasonable cost. The utilization of microbes and their quality items acquaints extra contemplations with the toxicological portion reaction relationship, including a need to decide the credibility of irresistible and immunological impacts in relationship with human introduction to these bio-pesticides in nourishment or the environment. Investigations of significant equality propose that nourishments at present got from plant fused protectants are not prone to contrast from regular sustenance. Notwithstanding, there is general agreement that the logical strategies to survey dangers from hereditarily changed sustenance and smaller scale creatures will keep on advancing later on. Besides, bio-pesticide research is as yet going on and further research is required in numerous angles including bio-formulation and zones, for example, commercialization. This chapter has reviewed the significant and fundamental deserting of major bio-pesticides before. The future prospects for the improvement of new bio-pesticides are likewise discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147

    CAS  PubMed  Google Scholar 

  • Almudena Ortiz-Urquiza, Nemat O. Keyhani, (2015) Stress response signaling and virulence: insights from entomopathogenic fungi. Current Genetics 61 (3):239–249

    Google Scholar 

  • Alves R, Teixeira CGS (2014) Primeiro registro das espécies de cigarrinhas-da-raiz da cana-de-açúcar Mahanarva spectabilis (Distant) e Mahanarva liturata (Le Peletier & Serville) atacando canaviais na região de Goianésia (GO), Brasil. Agric Entomol 81:83–85

    Google Scholar 

  • Al-Zaidi AA, Elhag EA, Al-Otaibi SH, Baig MB (2011) Negative effects of pesticides on the environment and the farmers awareness in Saudi Arabia: a case study. J Anim Plant Sci 21(3):605–611

    Google Scholar 

  • Arthurs SP, Lacey LA, Miliczky ER (2007) Evaluation of the codling moth granulovirus and spinosad for codling moth control and impact on non-target species in pear orchards. Biol Control 41:99–109

    Article  Google Scholar 

  • Ashwini N, Srividya S (2014) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotech 4:127–136

    CAS  Google Scholar 

  • Azizoglu U, Yilmaz S, Ayvaz A, Karabörklü S, Atciyurt ZB (2017) Mosquitocidal potential of native Bacillus thuringiensis strain SY49-1 against Disease Vector, Culex pipiens (Diptera: Culicidae). Trop Biomed 34(2):256–262

    PubMed  Google Scholar 

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringiensis §-Endotoxin Expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85(4):1103–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bidochka MJ, Khachatourians GG (1991) The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. J Invertebr Pathol 58:106–117

    Article  CAS  Google Scholar 

  • Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606

    Article  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR et al (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematics of photorhabdus and xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 35–56

    Chapter  Google Scholar 

  • Borgi I, Gargouri A (2016) A novel high molecular weight thermo-acidoactive β-glucosidase from Beauveria bassiana. Appl Biochem Microbiol 52:602

    Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Brooks FM (1988) Entomogenous protozoa. In: Ignoffo CM, Mandava MB (eds) Handbook of natural pesticides, vol V, microbial insecticides, part a, entomogenous protozoa and fungi. CRC Press, Boca Raton, pp 1–149

    Google Scholar 

  • Cai SF, Lu XM, Qiu HH, Li MQ, Feng ZZ (2012) Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J Integr Agric 11:1321–1326

    Article  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of Bio-pesticides for integrated pest management. Philos Trans R Soc Lond Ser B Biol Sci 366:1987–1998

    Article  Google Scholar 

  • Charnley AK (2003) Fungal pathogens of insects: cuticle-degrading enzymes and toxins. Adv Bot Res 40:241–321

    Article  CAS  Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps ) bassiana. Microbiology 153:3438–3447

    Article  CAS  PubMed  Google Scholar 

  • Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53(12):4643–4653

    Article  CAS  PubMed  Google Scholar 

  • Copping LG, Menn JJ (2000) Bio-pesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Cory JS, Hirst ML, Sterling PH, Speight MR (2000) Native host range nucleopolyhedric virus for control of the browntail moth (Lepidoptera: Lymantriidae). Environ Entomol 29:661–667

    Article  Google Scholar 

  • Crickmore N, Bravo A, Narva, KLD; Sampson K, Schnepf E, Sun M, Ziegler DR Bacillus thuringiensis toxin nomenclature, 2016

    Google Scholar 

  • Dimetry NZ (2012) Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt. Arch Phytopathol Plant Protect 45:1138–1161

    Article  CAS  Google Scholar 

  • Dimetry NZ, Abd El-Salam AME, El-Hawary FMA (2010) Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch Phytopathol Plant Protect 43:700–711

    Article  Google Scholar 

  • Dinardo-Miranda LL, Garcia V, Parazzi VJ (2002) Efeito de Inseticidas no Controle de Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) e de Nematóides Fitoparasitos na Qualidade Tecnológica e na Produtividade da Cana-de-Açúcar. Neotrop Entomol 31:609–614

    Article  CAS  Google Scholar 

  • Duncan LW, McCoy CW (1996) Vertical distribution in soil, persistence, and efficacy against citrus root weevil (Coleoptera: Curculionidae) of two species of entomogenous nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Environ Entomol 25:174–178

    Article  Google Scholar 

  • Ellenhorn MJ, Schonwald S, Ordog G, Wasserberger J (1997) Ellenhorn’s medical toxicology: diagnosis and treatment of human poisoning. Williams & Wilkins, Baltimore, pp 1614–1663

    Google Scholar 

  • El-Sayed EI (1982–1983a) Evaluation of the insecticidal properties of the common Indian neem (Azadirachta Indica A Juss) seeds against the Egyptian cotton leaf worm (Spodoptera litoralis) (Boisd.). Bull Entomol Soc Egypt Econ Ser. 13:39–47S

    Google Scholar 

  • El-Sayed EI (1982–1983b) Neem (Azadirachta indica A. Juss) seeds as antifeedant and ovipositional repellent for the Egyptian cotton leafworm Spodoptera littoralis (Boisd.). Bull Entomol Soc Egypt Econ Ser 13:49–58

    Google Scholar 

  • EPA (Environmental Protection Agency) (2006) New biopesticide active ingredients. www.epa.gov/pesticides/Bio-pesticides/productlists/. Accessed 10 June 2019

  • Faria MR, Magalhães BP (2001) O uso de fungos ento-mopatogênicos no Brasil. Biotecnol Cienc Desenvolvimento 22:18–21

    Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015a) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. PNAS 112(36):11365–11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015b) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A 112:11365–11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG et al (1987) Insect tolerant transgenic tomato plants. Nat Biotechnol 5(8):807–813

    Article  CAS  Google Scholar 

  • Fishilevich E, Vélez AM, Storer NP, Li H, Bowling AJ, Rangasamy M et al (2016) RNAi as a management tool for the western corn rootworm. Pest Manag Sci 72(9):1652–1663

    Article  CAS  PubMed  Google Scholar 

  • Gathmann A, Priesnitz KU (2014) How susceptible are different lepidopteran/coleopteran maize pests to Bt-proteins: a systematic review protocol. Environ Evid 3:12

    Article  Google Scholar 

  • Georgis R (1990) Commercialization of steinernematid and heterorhabditid entomopathogenic nematodes. InBrighton Crop Protection Conference, Pests and Diseases-1990. 1;275-280, British Crop Protection Council

    Google Scholar 

  • Ghribi D, Mnif I, Boukedi H, Kammoun R, Ellouze-Chaabouni S (2011) Statistical optimization of low-cost medium for economical production of Bacillus subtilis biosurfactant, a biocontrol agent for the olive moth Prays oleae. Afr J Microbiol Res 5:4927–4936

    Google Scholar 

  • Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2012) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invertebr Pathol 109:183–186

    Article  CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J et al (2012) Have bio-pesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Global Status of Commercialized Biotech/GM Crops: 2016 (2016) ISAAA Brief No. 52. ISAAA, Ithaca

    Google Scholar 

  • Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T et al (2010) Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J 29(7):143

    Article  CAS  Google Scholar 

  • Grewal PS, Lewis EE, Gaugler R (1997) Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected hosts. J Chem Ecol 23:503–515

    Article  CAS  Google Scholar 

  • Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) (2005) Nematodes as biological control agents. CABI Publishing, Wallingford

    Google Scholar 

  • Halo LM, Heneghan MN, Yakasai AA, Song Z, Williams K, Bailey AM et al (2008) Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J Am Chem Soc 130:17988–17996

    Article  CAS  PubMed  Google Scholar 

  • Hamill RL, Higgens GE, Boaz HE, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 10(49):4255–4258

    Article  Google Scholar 

  • Han R. Ehlers R.U. (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J. Invertebr. Pathol.75, 55–58.

    Google Scholar 

  • Henry JE, Oma EA, Burges HD (1981) Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. In: Microbial control of pests and plant diseases 1970–1980. Academic Press, New York

    Google Scholar 

  • Herniou EA, Jehle JA (2007) Baculovirus phylogeny and evolution. Curr Drug Targets 8:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Severson TF, Kang KD et al (2001) Recombinant baculoviruses for insect control. Pest Manag Sci 57:981–987

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Matsuura H, MacKinnon S, Durst T, Towers GHN, Arnason JT (1996) Phytochemistry of the Meliaceae. So many terpenoids, so few insecticides. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy. Plenum, New York, pp 155–178

    Chapter  Google Scholar 

  • Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF et al (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Jisha VN, Smitha RB, Benjain S (2013) An overview on the crystal toxins from Bacillus thuringiensis. Adv Microbiol 3(5):462

    Article  CAS  Google Scholar 

  • Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In: Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. CRC Press, Boca Raton, pp 173–183

    Google Scholar 

  • Kamita SG, Kang KD, Hammock BD (2005) Genetically modified baculoviruses for pest insect control. In: Iatrou K, Gilbert LI, Gill SS (eds) Comprehensive molecular insect science. Elsevier, Oxford, pp 271–322

    Chapter  Google Scholar 

  • Kavitha PG, Jonathan EI, Nakkeeran S (2012) Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematol Mediterr 40:203–206

    Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey L (ed) Manual of techniques in insect pathology. Academic Press, San Diego, pp 281–324

    Chapter  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, Cham, pp 317–332

    Chapter  Google Scholar 

  • Kogan M, Jepson P (2007) Ecology, sustainable development and IPM: the human factor. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, pp 1–44

    Chapter  Google Scholar 

  • Koppenhofer AM (2007) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: Application and evaluation of pathogens for control of insects and other invertebrate pests, 2nd edn. Springer, Dordrecht, pp 249–264

    Chapter  Google Scholar 

  • Kouti K, Lemmens M, Lemmens-Gruber R (2003) Beauvericin induced channels in ventricular myocytes and liposomes. Biochim Biophys Acta 1609:203–210

    Article  CAS  Google Scholar 

  • Kumar S (2012) Bio-pesticides: a need for food and environmental safety. J Biofertil Biopestic 3:413

    CAS  Google Scholar 

  • Kutinkova H, Samietz J, Dzhuvinov V, Zingg DP, Kessler P (2012) Successful application of the baculovirus product Madex® for control of Cydia pomonella (L.) in Bulgaria. J Plant Prot Res 52(2):205–213

    Article  Google Scholar 

  • Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218–225

    PubMed  PubMed Central  Google Scholar 

  • Lacey LA, Headrick HL, Arthurs SP (2008) Effect of temperature on long-term storage of codling moth granulovirus formulations. J Econ Entomol 101:288–294

    Article  CAS  PubMed  Google Scholar 

  • Lange CE, Sokolova YY (2017) The development of the microsporidium Paranosema (Nosema) locustae for grasshopper control: John Henry’s innovation with worldwide lasting impacts. Protistology 11(3):170–174

    Article  Google Scholar 

  • Laurent P, Frérot B (2007) Monitoring of European corn borer with pheromone-baited traps: review of trapping system basics and remaining problems. J Econ Entomol 100:1797–1807

    Article  PubMed  Google Scholar 

  • Leatemia JA, Isman MB (2004a) Efficacy of crude seed extracts of Annona squamosa against Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133

    Article  Google Scholar 

  • Leatemia JA, Isman MB (2004b) Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytoparasitica 32:30–37

    Article  Google Scholar 

  • Lewis MW, Robalino IV, Keyhani NO (2009) Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology 155:3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bonning BC (2007) Evaluation of insecticidal efficacy of wild-type and recombinant baculoviruses. Methods Mol Biol 388:379–404

    Article  CAS  PubMed  Google Scholar 

  • Londershausen M, Leight W, Lieb F, Moeschler H (1991) Molecular mode of action of annonins. Pestic Sci 33:427–438

    Article  CAS  Google Scholar 

  • Lozano-Tovar MD, Garrido-Jurado I, Quesada-Moraga E, Trapero-Casas MCR (2017) Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Prot 100:186–195

    Article  CAS  Google Scholar 

  • Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A et al (2017) Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 13(4):e1006302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, D.; Baiocchi, T.; Dillman, A.R. Genomics of entomopathogenic nematodes and implications for pest control. Trends Parasitol. 2016, 32, 588–598

    Google Scholar 

  • Lucon CMM, Guzzo SD, De Jesus CO, Pascholati SF, De Goes A (2010) Post harvest harpin or Bacillus thuringiensis treatments suppress citrus black spot in ‘valencia’ oranges. Crop Prot 29:766–772

    Article  Google Scholar 

  • Martins LN, de Lara APD, Ferreira MS, Nunes AM, Bernardi D, Leite FPL et al (2018) Biological Activity of Bacillus thuringiensis (Bacillales: Bacillaceae) in Anastrepha fraterculus (Diptera: Tephritidae). J Econ Entomol 111(3):1486–1489

    Article  PubMed  Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NJ, Alfonso D, Johnson JA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: recent progress. ACS Symposium Ser 117:133

    Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Nat Biotechnol 21(9):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Milner RJ, Lozano LB, Driver F, Hunter D (2003) A comparative study of two Mexican isolates with an Australian isolate of Metarhizium anisopliae var. acridum–strain characterisation, temperature profile and virulence for wingless grasshopper, Phaulacridium vittatum. Biocontrol 48:335–348

    Article  CAS  Google Scholar 

  • Mnyone LL, Koenraadt CJM, Lyimo IN, Mpingwa MW, Takken W, Russell TL (2010) Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasit Vectors 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadipour M, Mousivand M, Jouzani GS, Abbasalizadeh S (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Can J Microbiol 55:395–404

    Article  CAS  PubMed  Google Scholar 

  • Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1241–1275

    Article  CAS  PubMed  Google Scholar 

  • Morris ON (1985) Susceptibility of 31 species of agricultural pests to entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can Entomol 122:309–320

    Article  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • Moscardi F, de Souza ML, de Castro MEB, Lara Moscardi M, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York

    Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 152–178

    Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Ongena M, Henry G, Thonart P (2010) The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In: Recent developments in management of plant diseases. Springer, Dordrecht, pp 159–166

    Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, Quesada-Moraga E (2010) Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 105:270–278

    Article  CAS  PubMed  Google Scholar 

  • Passarelli LA (2011) Barriers to success: How baculoviruses establish efficient systemic infections. Virology 411 (2):383–392

    Google Scholar 

  • Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Sci Tech 6:389–402

    Article  Google Scholar 

  • Philogène BJR, Regnault-Roger C, Vincent C (2005) Botanicals: yesterday’s and today’s promises. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Bio-pesticides of plant origin. Lavoisier, Andover, pp 1–15

    Google Scholar 

  • Pomar GO Jr, Leutenegger R (1968) Anatomy of the effective and normal third stage juveniles of Steinernema carpocapsae Weiser (Steinernematidae: Nematoda). J Parasitol 54:340–350

    Article  Google Scholar 

  • Qadri SM, Kucherenko Y, Lang F (2011) Beauvericin induced erythrocyte cell membrane scrambling. Toxicology 283:24–31

    Article  CAS  PubMed  Google Scholar 

  • Que Q, Chilton MDM, de Fontes CM, He C, Nuccio M, Zhu T et al (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1(4):220–229

    Article  PubMed  Google Scholar 

  • Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W, Ilagan O et al (2013) Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLoS One 8(1):e54270e

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Philogène BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharm Biol 46:41–52

    Article  CAS  Google Scholar 

  • Reyes-Ramirez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Eleazar Barboza-Corona J (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69:131–134

    Article  Google Scholar 

  • Salazar-Flores J, Torress-Jasso JH, Rojas-Bravo D, Reyna-Villela ZM, TorresSánchez ED (2019) Effects of mercury, lead, arsenic and zinc to human renal oxidative stress and functions: a review. J Heavy Met Toxicity Dis 4(1):2

    Article  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer H, Singh RP (1995) List of insect pests susceptible to neem products. In: Schmutterer H (ed) The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. Wiley-VCH, Weinheim, pp 325–326

    Chapter  Google Scholar 

  • Schünemann R, Knaak N, Fiuza LD (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol 2014:135675

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannag HK, Capinera JL (2000) Interference of Steinernema carpocapsae (Nematoda: Steinernematidae) with Cardiochiles diaphaniae (Hymenoptera: Braconidae), a parasitoid of melonworm and pickleworm (Lepidoptera: Pyralidae). Environ Entomol 29:612–617

    Article  Google Scholar 

  • Shapiro DI, McCoy CW (2000) Virulence of entomopathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory. J Econ Entomol 93:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Shingote PR, Moharil MP, Dhumale DR, Jadhav PV, Satpute NS, Dudhare MS (2013) Screening of vip1/vip2 binary toxin gene and its isolation and cloning from local Bacillus thuringiensis isolates. Sci Asia 39:620–624

    Article  CAS  Google Scholar 

  • Solter LF, Becnel JJ (2000) Entomopathogenic microsporida. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Kluwer Academic, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Sosa-Gómez DR, Moscardi F, Santos B, Alves LFA, Alves SB (2008) Produçao e uso de vírus para o controle de pragas na América Latina. In: Alves SA, Lopes RB (eds) Controle microbiano de pragas na América Latina: abanicos e desafios. FEALQ, Piracicaba, pp 49–68

    Google Scholar 

  • Stamati PN, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    Google Scholar 

  • Sun X, Chen X, Zhang Z, Wang H, Bianchi FJJA, Peng H, Vlak JM, Hu Z (2002) Bollworm responses to release of genetically modified Helicoverpa armigera nucleopolyhedroviruses in cotton. J Invertebr Pathol 81:63–69

    Article  PubMed  Google Scholar 

  • Sundh I, Goettel MS (2013) Regulating biocontrol agents: a historical perspective and a critical examination comparing microbial and macrobial agents. Biocontrol 58:575–593

    Article  CAS  Google Scholar 

  • Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo de Souza M (2006) Baculoviruses-re-emerging bio-pesticides. Biotechnol Adv 24:143–160

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31(6):510–521

    Article  CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM et al (2014) Gageotetrins A-C, noncytotoxic antimicrobial linear lipopeptides from a marine bacterium Bacillus subtilis. Org Lett 16:928–931

    Article  CAS  PubMed  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2(3):194–208. https://doi.org/10.1089/ind.2006.2.194

    Article  Google Scholar 

  • Toledo AV, de Remes Lenicov AMM, Lastra CCL (2010) Histopathology caused by the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, in the adult plant hopper, Peregrinus maidis, a maize virus vector. J Insect Sci 10(35):1

    Article  Google Scholar 

  • Tulloch M (1976) The genus Metarhizium. Trans Br Mycol Soc 66:407–411

    Article  Google Scholar 

  • US Environmental Protection Agency (2019) EPA registers innovative tool to control corn rootworm, June 15, 2017. https://www.epa.gov/newsreleases/epa-registers-innovative-tool-control-corn-rootworm. Accessed 10 June 2019

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, de Beuckeleer M, Dean C et al (1987) Transgenic plants protected from insect attack. Nature 328(6125):33–37

    Article  CAS  Google Scholar 

  • Velho RV, Medina LF, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol (Praha) 56:297–303

    Article  CAS  Google Scholar 

  • Vincent CM, Andermatt M, Valéro J (2007) Madex® and VirosoftCP4®, viral Bio-pesticides for codling moth control. In: Vincent C, Goethel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Cambridge, pp 336–343

    Chapter  Google Scholar 

  • Wakil W, Yasin M, Shapiro-Ilan D (2017) Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier). Sci Rep 7:5971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wall C (1990) Principle of monitoring. In: Ridgeway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker Inc., New York, pp 9–23

    Google Scholar 

  • Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinzierl RA (2000) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, Boca Raton, FL: CRC Press, pp 101–121

    Google Scholar 

  • Witzgall P, Lindblom T, Bengtsson M et al (2004) The pherolist. online http://www. pherolist. slu. se.(accessed 2006-10-30).

    Google Scholar 

  • Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    Article  CAS  PubMed  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ et al (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Wang BC, Yu Z, Sun M (2014) Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins 6(9):2732–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Jing T, Yujun Y, Bin L, Hui L, Chun L (2011) Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase. Chin J Chem Eng 19:128–134

    Article  Google Scholar 

  • Yang MM, Li ML, an ZY, Wang YZ, Qu LJ, Wang QH (2012) Baculoviruses and insect pests control in China. Afr J Microbiol Res 6(2):214–218

    Google Scholar 

  • Zhang SZ, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80:811–826

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Xia XL, Xiao GH, Xiong CH, Hu X, Zhang SW et al (2012) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116. https://doi.org/10.1186/gb-2011-12-11-r116.

    Article  Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Special thanks are due to Research Centre, College of Pharmacy, King Saud University, Riyadh and Deanship of Scientific Research, King Saud University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, J.A. et al. (2020). Bio-Pesticides: Application and Possible Mechanism of Action. In: Bhat, R., Hakeem, K., Dervash, M. (eds) Bioremediation and Biotechnology, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-40333-1_6

Download citation

Publish with us

Policies and ethics