Skip to main content

Mycoremediation: A Sustainable Approach for Pesticide Pollution Abatement

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 2

Abstract

The sustainable approach to reducing pesticide pollution by using mycoremediation methods also aims to monitor and give equal importance to all ecological categories of organisms installed on degraded lands with maximum risk, because only a specific diversity in the ecosystem can guarantee its stability, its chances of evolution, and implicitly the ecoprotective functions for which it is installed. Toxic substances are sometimes needed to eradicate a particularly serious infestation or disease, but these toxic substances should be used as a last resort after using all bioremediation methods including mycoremediation methods. Recovery of appropriate biological processes is vital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asemaninejad A, Thorn RG, Lindo Z (2017) Experimental climate change modifies degradative succession in boreal peatland fungal communities. Microb Ecol 73(3):521–531

    Article  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606. https://doi.org/10.3389/fmicb.2018.01606. eCollection 2018. Review

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bruckner A, Schmerbauch A, Ruess L, Heigl F, Zaller J (2019) Foliar roundup application has minor effects on the compositional and functional diversity of soil microorganisms in a short-term greenhouse experiment. Ecotoxicol Environ Saf 174:506–513

    Article  CAS  Google Scholar 

  • Buysens C, Dupré de Boulois H, Declerck S (2015) Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza 25(4):277–288

    Article  CAS  Google Scholar 

  • Castro-Rodríguez V, Cañas RA, de la Torre FN, Pascual MB, Avila C, Cánovas FM (2017) Molecular fundamentals of nitrogen uptake and transport in trees. J Exp Bot 68(10):2489–2500

    Article  Google Scholar 

  • Chan-Cupul W, Heredia-Abarca G, Rodríguez-Vázquez R (2016) Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health B 51(5):298–308

    Article  CAS  Google Scholar 

  • Chanda A, Gummadidala PM, Gomaa OM (2016) Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 100(1):17–29. Review

    Article  CAS  Google Scholar 

  • Garg N, Kashyap L (2019) Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress. Environ Sci Pollut Res Int 26(8):7821–7839

    Article  CAS  Google Scholar 

  • Hage-Ahmed K, Rosner K, Steinkellner S (2019) Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci 75(3):583–590

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Shah MA (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. By arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int 2016:6294098

    Article  Google Scholar 

  • Himmelstein J, Maul JE, Balci Y, Everts KL (2016) Factors associated with leguminous green manure incorporation and Fusarium wilt suppression in watermelon. Plant Dis 100(9):1910–1920

    Article  CAS  Google Scholar 

  • Huang X, Wang L, Ma F (2017) Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 187:221–229

    Article  CAS  Google Scholar 

  • Husna BRSW, Mansur I, Kusmana C (2016) Growth and nutrient status of kayu kuku [Pericopsis mooniana (Thw.) Thw] with mycorrhiza in soil media of nickel post mining site. Pak J Biol Sci 19(4):158–170

    Article  CAS  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881

    Article  CAS  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, Cham, pp 317–332

    Chapter  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90(8):2088–2097

    Article  Google Scholar 

  • Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T (2015) Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity. Mol Ecol 24(23):5992–6005

    Article  CAS  Google Scholar 

  • Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A (2016) Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant Cell Environ 39(12):2691–2700

    Article  CAS  Google Scholar 

  • Lekberg Y, Wagner V, Rummel A, McLeod M, Ramsey PW (2017) Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecol Appl 27(8):2359–2368

    Article  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19(2):229–238

    Article  CAS  Google Scholar 

  • Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137(3):473–477

    Article  Google Scholar 

  • Lovett GM, Tear TH, Evers DC, Findlay SE, Cosby BJ, Dunscomb JK, Driscoll CT, Weathers KC (2009) Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann N Y Acad Sci 1162:99–135

    Article  CAS  Google Scholar 

  • Mallmann GC, Sousa JP, Sundh I, Pieper S, Arena M, da Cruz SP, Klauberg-Filho O (2018) Placing arbuscular mycorrhizal fungi on the risk assessment test battery of plant protection products (PPPs). Ecotoxicology 27(7):809–818

    Article  CAS  Google Scholar 

  • Mei L, Yang X, Zhang S, Zhang T, Guo J (2019) Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Sci Total Environ 686:1129–1139

    Article  CAS  Google Scholar 

  • Metcalfe DB, Rocha W, Balch JK, Brando PM, Doughty CE, Malhi Y (2018) Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest. Glob Chang Biol 24(8):3629–3641

    Article  Google Scholar 

  • Mohamed I, Eid KE, Abbas MHH, Salem AA, Ahmed N, Ali M, Shah GM, Fang C (2019) Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol Environ Saf 171:539–548

    Article  CAS  Google Scholar 

  • Motaharpoor Z, Taheri H, Nadian H (2019) Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa. Mycorrhiza 29(4):389–395

    Article  CAS  Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 152–178

    Google Scholar 

  • Pena R, Lang C, Naumann A, Polle A (2014) Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Front Plant Sci 5:229

    Article  Google Scholar 

  • Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R (2017) Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol 215(1):443–453

    Article  CAS  Google Scholar 

  • Solarin SA, Al-Mulali U, Gan GGG, Shahbaz M (2018) The impact of biomass energy consumption on pollution: evidence from 80 developed and developing countries. Environ Sci Pollut Res Int 25(23):22641–22657

    Article  CAS  Google Scholar 

  • Song F, Li J, Fan X, Zhang Q, Chang W, Yang F, Geng G (2016) Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress. Sci Rep 6:20245. https://doi.org/10.1038/srep20245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa-Hernández MA, Leifheit EF, Ingraffia R, Rillig MC (2019) Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet? Front Microbiol 10:744

    Article  Google Scholar 

  • Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56

    Article  CAS  Google Scholar 

  • Sudová R, Kohout P, Kolaříková Z, Rydlová J, Voříšková J, Suda J, Španiel S, Müller-Schärer H, Mráz P (2018) Sympatric diploid and tetraploid cytotypes of Centaurea stoebe s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. Am J Bot 105(12):1995–2007

    PubMed  Google Scholar 

  • Torres JP, Fróes-Asmus CI, Weber R, Vijgen JM (2013) HCH contamination from former pesticide production in Brazil-a challenge for the Stockholm Convention implementation. Environ Sci Pollut Res Int 20(4):1951–1957

    Article  CAS  Google Scholar 

  • Trocha LK, Weiser E, Robakowski P (2016) Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings. Mycorrhiza 26(1):47–56

    Article  CAS  Google Scholar 

  • Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S (2018) Exploring the roles of aquaporins in plant microbe interactions. Cells 7(12):E267. https://doi.org/10.3390/cells7120267. Review

    Article  CAS  PubMed  Google Scholar 

  • Zaller JG, Cantelmo C, Santos GD, Muther S, Gruber E, Pallua P, Mandl K, Friedrich B, Hofstetter I, Schmuckenschlager B, Faber F (2018) Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ Sci Pollut Res Int 25(23):23215–23226

    Article  CAS  Google Scholar 

  • Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes. J Environ Sci (China) 46:92–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butu, M., Stef, R., Corneanu, M., Butnariu, M. (2020). Mycoremediation: A Sustainable Approach for Pesticide Pollution Abatement. In: Bhat, R., Hakeem, K., Dervash, M. (eds) Bioremediation and Biotechnology, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-40333-1_5

Download citation

Publish with us

Policies and ethics