Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor

Part of the Power Systems book series (POWSYS)


Precise mathematical modeling of the tubular surface-mount linear PMSM based on the physics of the machine is an essential requirement to formulate any type of control scheme for the machine. In this chapter, the dynamic model of tubular surface-mount linear PMSM in three-phase stationary abc-reference frame is formulated. In order to reduce mathematical complexity, the dynamic model of the surface-mount linear PMSM is developed under some standard assumptions which are often used in formulations of mathematical models for a vast variety of electric machines. In addition, the dynamic model of the surface-mount linear PMSM in three phase stationary abc-reference is transformed to two-axis reference frames by using appropriate transformations to further simplify the controller design process for the machine.


  1. 1.
    I. Boldea, S. A. Nasar, Linear Electric Actuators and Generators (Cambridge University Press Inc., New York, 1997) Google Scholar
  2. 2.
    D. Gerling, Electrical Machines: Mathematical Fundamentals of Machine Topologies (Springer-Verlag, Berlin Heidelberg, 2015)Google Scholar
  3. 3.
    P. S. Chandana Perara, Sensorless Control of Permanent Magnet Synchronous Motor Drives, Ph.D. Dissertation, Faculty of Engineering and Sciences, Alborg Univ., Denmark, 2002Google Scholar
  4. 4.
    D.W. Novotny, T.A. Lipo, Vector Control and Dynamics of AC Drives (Oxford University Press Inc, New York, 1996)Google Scholar
  5. 5.
    T.A. Lipo, Analysis of Synchronous Machines (CRC Press, Taylor & Francis Group, New York, 2012)CrossRefGoogle Scholar
  6. 6.
    C.M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK (Prentice Hall, PTR, Upper Saddle Rive, New Jersey, 1998)Google Scholar
  7. 7.
    P. Krause, O. Wasynczuk, S. Sudhoff, S. Pekarek, Analysis of Electric Machinery and Drive Systems (Wiley, Hoboken, New Jersey, 2013)CrossRefGoogle Scholar
  8. 8.
    T. M. Jahns, Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. IA-23, 681–689 (1987)CrossRefGoogle Scholar
  9. 9.
    R.H. Park, Two-reaction theory of synchronous machines generalized method of analysis-part I. AIEE Trans. 48, 716–727 (1929)Google Scholar
  10. 10.
    H.C. Stanley, An analysis of induction motor. AIEE Trans. 57, 751–755 (1938)Google Scholar
  11. 11.
    C.L. Fortescue, Method of symmetrical co-ordinates applied to the solution of polyphase networks. AIEE Trans. 37, 629–716 (1918)Google Scholar
  12. 12.
    W.V. Lyon, Transient conditions in electric machinery. AIEE Trans. 42, 159–179 (1923)Google Scholar
  13. 13.
    W.V. Lyon, Transient Analysis of Alternating Current Machinery (Wiley, New York, 1954)Google Scholar
  14. 14.
    M.S.W. Tam, N.C. Cheung, A high speed high precision linear drive system for manufacturing automation. Sixt. Annu. IEEE APEC 1, 440–444 (2001)Google Scholar
  15. 15.
    P. Famouri, Control of a linear permanent magnet brushless DC motor via exact linearization methods. IEEE Trans. Energy Convers. 7, 544–551 (1992)CrossRefGoogle Scholar
  16. 16.
    F. Lin, C. Lin, C. Hong, Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator. IEE Electr. Power Appl. 147, 263–272 (2000)CrossRefGoogle Scholar
  17. 17.
    F. Lin, R. Wai, Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive. IEEE Trans. Fuzzy Syst. 9, 102–115 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Wai, W. Liu, Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique. IEE. Control. Theory Appl. 148, 217–231 (2001)CrossRefGoogle Scholar
  19. 19.
    F. Lin, K. Shyu, C. Lin, Incremental motion control of linear synchronous motor. IEEE Trans. Aerosp. Electron. Syst. 38, 1011–1022 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Liu, Y. Lee, Y. Crang, Adaptive controller design for a linear motor control system. IEEE Trans. Aerosp. Electron. Syst. 40, 601–616 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Vittek, J. Michalik, V. Vavrus, V. Horvath, Design of control system for forced dynamics control of an electric drive employing linear permanent magnet synchronous motor. International Conference on Industrial Electronics and Control Applications, ICIECA (2005), pp. 1–6Google Scholar
  22. 22.
    C. Sung, Y. Huang, Based on direct thrust control for linear synchronous motor systems. IEEE Ind. Electron. 56, 1629–1639 (2009)CrossRefGoogle Scholar
  23. 23.
    A.Y.M. Abbas, J.E. Fletcher, Synthetic loading applied to linear permanent magnet synchronous machines. IET Renew. Power Gener. 4, 221–231 (2010)CrossRefGoogle Scholar
  24. 24.
    A.Y.M. Abbas, J.E. Fletcher, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, O.D. Ramírez-Cárdenas, Robust backstepping tracking controller for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Ind. Informat. 11, 1130–1141 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Zhao, S. Jiao, Q. Chen, D. Xu, J. Ji, Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer. IEEE Ind. Electron. 65, 9291–9300 (2018)CrossRefGoogle Scholar
  27. 27.
    W. Zhao, A. Yang, J. Ji, Q. Chen, J. Zhu, Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor. IEEE Trans. Power Electron. 34, 7800–7811 (2019)CrossRefGoogle Scholar
  28. 28.
    P.C. Sen, Principles of Electric Machines and Power Electronics (Wiley, USA, 1997)Google Scholar
  29. 29.
    T. M. Jahns, G. B. Kliman, T. W. Neumann, Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22, 738–747 (1986)CrossRefGoogle Scholar
  30. 30.
    W.C. Duesterhoeft, M.W. Schulz, E. Clarke, Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. AIEE Trans. 70, 1248–1255 (1951)Google Scholar
  31. 31.
    G. Kron, Equivelent Circuits of Electric Machinery (Wiley, New York, 1951)Google Scholar
  32. 32.
    Y.S. Huang, C.C. Sung, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research and Special DesignNorthern Transformer CorporationMapleCanada
  2. 2.The University of New South WalesSydneyAustralia

Personalised recommendations