Skip to main content

Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor

  • Chapter
  • First Online:
Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor

Abstract

Precise mathematical modeling of the tubular surface-mount linear PMSM based on the physics of the machine is an essential requirement to formulate any type of control scheme for the machine. In this chapter, the dynamic model of tubular surface-mount linear PMSM in three-phase stationary abc-reference frame is formulated. In order to reduce mathematical complexity, the dynamic model of the surface-mount linear PMSM is developed under some standard assumptions which are often used in formulations of mathematical models for a vast variety of electric machines. In addition, the dynamic model of the surface-mount linear PMSM in three phase stationary abc-reference is transformed to two-axis reference frames by using appropriate transformations to further simplify the controller design process for the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Boldea, S. A. Nasar, Linear Electric Actuators and Generators (Cambridge University Press Inc., New York, 1997)

    Google Scholar 

  2. D. Gerling, Electrical Machines: Mathematical Fundamentals of Machine Topologies (Springer-Verlag, Berlin Heidelberg, 2015)

    Google Scholar 

  3. P. S. Chandana Perara, Sensorless Control of Permanent Magnet Synchronous Motor Drives, Ph.D. Dissertation, Faculty of Engineering and Sciences, Alborg Univ., Denmark, 2002

    Google Scholar 

  4. D.W. Novotny, T.A. Lipo, Vector Control and Dynamics of AC Drives (Oxford University Press Inc, New York, 1996)

    Google Scholar 

  5. T.A. Lipo, Analysis of Synchronous Machines (CRC Press, Taylor & Francis Group, New York, 2012)

    Book  Google Scholar 

  6. C.M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK (Prentice Hall, PTR, Upper Saddle Rive, New Jersey, 1998)

    Google Scholar 

  7. P. Krause, O. Wasynczuk, S. Sudhoff, S. Pekarek, Analysis of Electric Machinery and Drive Systems (Wiley, Hoboken, New Jersey, 2013)

    Book  Google Scholar 

  8. T. M. Jahns, Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. IA-23, 681–689 (1987)

    Article  Google Scholar 

  9. R.H. Park, Two-reaction theory of synchronous machines generalized method of analysis-part I. AIEE Trans. 48, 716–727 (1929)

    Google Scholar 

  10. H.C. Stanley, An analysis of induction motor. AIEE Trans. 57, 751–755 (1938)

    Google Scholar 

  11. C.L. Fortescue, Method of symmetrical co-ordinates applied to the solution of polyphase networks. AIEE Trans. 37, 629–716 (1918)

    Google Scholar 

  12. W.V. Lyon, Transient conditions in electric machinery. AIEE Trans. 42, 159–179 (1923)

    Google Scholar 

  13. W.V. Lyon, Transient Analysis of Alternating Current Machinery (Wiley, New York, 1954)

    Google Scholar 

  14. M.S.W. Tam, N.C. Cheung, A high speed high precision linear drive system for manufacturing automation. Sixt. Annu. IEEE APEC 1, 440–444 (2001)

    Google Scholar 

  15. P. Famouri, Control of a linear permanent magnet brushless DC motor via exact linearization methods. IEEE Trans. Energy Convers. 7, 544–551 (1992)

    Article  Google Scholar 

  16. F. Lin, C. Lin, C. Hong, Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator. IEE Electr. Power Appl. 147, 263–272 (2000)

    Article  Google Scholar 

  17. F. Lin, R. Wai, Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive. IEEE Trans. Fuzzy Syst. 9, 102–115 (2001)

    Article  Google Scholar 

  18. R. Wai, W. Liu, Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique. IEE. Control. Theory Appl. 148, 217–231 (2001)

    Article  Google Scholar 

  19. F. Lin, K. Shyu, C. Lin, Incremental motion control of linear synchronous motor. IEEE Trans. Aerosp. Electron. Syst. 38, 1011–1022 (2002)

    Article  Google Scholar 

  20. T. Liu, Y. Lee, Y. Crang, Adaptive controller design for a linear motor control system. IEEE Trans. Aerosp. Electron. Syst. 40, 601–616 (2004)

    Article  Google Scholar 

  21. J. Vittek, J. Michalik, V. Vavrus, V. Horvath, Design of control system for forced dynamics control of an electric drive employing linear permanent magnet synchronous motor. International Conference on Industrial Electronics and Control Applications, ICIECA (2005), pp. 1–6

    Google Scholar 

  22. C. Sung, Y. Huang, Based on direct thrust control for linear synchronous motor systems. IEEE Ind. Electron. 56, 1629–1639 (2009)

    Article  Google Scholar 

  23. A.Y.M. Abbas, J.E. Fletcher, Synthetic loading applied to linear permanent magnet synchronous machines. IET Renew. Power Gener. 4, 221–231 (2010)

    Article  Google Scholar 

  24. A.Y.M. Abbas, J.E. Fletcher, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)

    Article  Google Scholar 

  25. J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, O.D. Ramírez-Cárdenas, Robust backstepping tracking controller for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Ind. Informat. 11, 1130–1141 (2015)

    Article  Google Scholar 

  26. W. Zhao, S. Jiao, Q. Chen, D. Xu, J. Ji, Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer. IEEE Ind. Electron. 65, 9291–9300 (2018)

    Article  Google Scholar 

  27. W. Zhao, A. Yang, J. Ji, Q. Chen, J. Zhu, Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor. IEEE Trans. Power Electron. 34, 7800–7811 (2019)

    Article  Google Scholar 

  28. P.C. Sen, Principles of Electric Machines and Power Electronics (Wiley, USA, 1997)

    Google Scholar 

  29. T. M. Jahns, G. B. Kliman, T. W. Neumann, Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22, 738–747 (1986)

    Article  Google Scholar 

  30. W.C. Duesterhoeft, M.W. Schulz, E. Clarke, Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. AIEE Trans. 70, 1248–1255 (1951)

    Google Scholar 

  31. G. Kron, Equivelent Circuits of Electric Machinery (Wiley, New York, 1951)

    Google Scholar 

  32. Y.S. Huang, C.C. Sung, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Masood Cheema .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheema, M.A.M., Fletcher, J.E. (2020). Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor. In: Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-40325-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40325-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40324-9

  • Online ISBN: 978-3-030-40325-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics