Advertisement

Materials and Methods

Chapter
  • 114 Downloads

Abstract

This chapter provides an overview of the materials and methods used in the study of the terrestrial and offshore mud volcanoes of the Black Sea region. The general strategy includes geomorphological, geological, geophysical, gas-geochemical, paleontological, and micropaleontological dimensions. The geomorphological dimension covers observations of the terrain/sea bottom relief in the search for mud volcanoes. As a rule, mud volcanoes on land are characterized by rounded positive forms of relief comprising hills up to 60 m in height. The hills are constituted largely of mud breccia. Some mud volcanoes look like small, rounded puddles filled with bubbling liquid mud. In the sea, the geomorphological dimension entails bathymetrical (morphometrical) analysis of bottom relief performed by multibeam echo sounder and side-scan sonar that enable mapping of local bottom elevations that could represent mud volcanoes. The geophysical dimension involves seismoacoustic profiling, multichannel seismic profiling, cross and ring seismic sounding (tomography) on reflected and refracted waves, in situ geothermal measurements, detailed gravimetric and magnetometric survey, sounding the formation of the electromagnetic field in order to determine the conductivity parameters of the bottom sediments and the layer of gas hydrates, and laboratory experimental thermodynamic studies of the physical properties of artificial samples of hydrate-containing bottom sediments. Seeps and gas emanations from mud volcanoes were studied by echo sounding with the help of modern digital echo sounders. The geological dimension applies to both terrestrial mud volcanoes and adjacent recessed synclines as well as offshore mud volcanoes. This dimension focuses on the study of sediments within mud volcanic structures, including identification of lithological, grain-size, and mineralogical properties of the sediments recovered by drilling, coring, and dredging. The gas-geochemical dimension covers geochemical investigation of gases emitted by mud volcanoes. The paleontological and micropaleontological dimensions investigated mollusks, foraminifers, ostracods, and nematodes.

References

  1. Ilyina LB (1966) Istoriia gastropod Chernogo moria (History of the gastropods of the Black Sea). Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 110, Moscow (in Russian)Google Scholar
  2. Nevesskaya LA (1963) Opredelitel’ dvustvorchatykh molliuskov morskikh chetvertichnikh otlozheniy Chernomorskogo basseina (Guide to the identification of bivalves from quaternary marine sediments of the Black Sea). Trudy Palentologicheskogo Instituta Academii Nauk SSSR 96. Nauka, Moscow (in Russian)Google Scholar
  3. Shnyukov EF (2016) Flyuidogennaya mineralizatsiya gryazevykh vulkanov Azovo-Chernomrskogo regiona (Fluidogenic mineralization of mud volcanoes of the Azov-Black Sea region). Logos, Kiev (in Russian)Google Scholar
  4. Shnyukov EF, Shchiptsov AA (1996) Geologicheskie issledovaniya NIS «Kiev» v Chernom more (6-y reys) (Geological research of the R/V “Kiev” in the Black Sea [6th voyage]). OMGOR NAMIT, Kiev (in Russian)Google Scholar
  5. Shnyukov EF, Rybalko SI, Grigorev AB et al (1977) Nauchno-issledovatelskoe sudno «Geokhimik» i nekotorye itogi pervykh reysov v severo-zapadnuyu chasti Chernogo morya (Research vessel “Geochemist” and some results of the first voyages to the northwestern part of the Black Sea). Preprint. Institut Geokhimii s fisiky mineralov, Kiev (in Russian)Google Scholar
  6. Shnyukov EF, Shchiptsov AA, Ivannikov AV et al (1997) Geologiya Chernogo morya (po rezultatam geologicheskikh i geofizicheskikh issledovaniy 5-go reysa NIS «Kiev») (Geology of the Black Sea (based on the results of geological and geophysical studies of the 5th cruise of the R/V “Kiev”)). OMGOR, Kiev (In Russian)Google Scholar
  7. Shnyukov EF, Sheremetyev VM, Maslakov NA et al (2005) Gryazevye vulkany Kerchensko-Tamanskogo regiona. (Mud volcanoes of the Kerch-Taman peninsula). Glavmedia, Krasnodar (in Russian)Google Scholar
  8. Shnyukov EF, Kobolev VP, Pasynkov AA (2013) Gazovyy vulkanizm Chernogo morya (Gas volcanism of the Black Sea). Logos, Kiev (in Russian)Google Scholar
  9. Shnyukov EF, Stupina LV, Rybak ЕN et al (2015) Gryazevye vulkany Chernogo morya. Katalog (Black Sea mud volcanoes. Catalogue). Logos, Kiev (in Russian)Google Scholar
  10. Yanko VV, Gramova LV (1990) Stratigrafiya chetvertichnykh otlozheniy Kavkazskogo shelfa i kontinentalnogo sklona Chernogo morya po mikrofaune (Stratigraphy of quaternary deposits of the Caucasian shelf and the continental slope of the Black Sea based on the microfauna). Soviet Geol 2:60–72 (in Russian)Google Scholar
  11. Yanko VV, Troitskaya TS (1987) Pozdnechetvertichnye foraminifery Chernogo moria (Late Quaternary foraminifera of the Black Sea). Nauka, Moscow (In Russian)Google Scholar
  12. Yanko V (also Yanko-Hombach V), Kravchuk AO, Kulakova II (2017) Meiobentos metanovykh vykhodov Chernogo morya (Meiobenthos of methane outlets of the Black Sea). Phenix, Odessa (in Russian)Google Scholar
  13. Yanko-Hombach V (2007) Controversy over Noah’s flood in the Black Sea: geological and foraminiferal evidence from the shelf. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question: changes in coastline, climate and human settlement. Springer, Dordrecht, pp 149–204CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Marine Geology and the Sedimentary Ore Formation (OMGOR NASU), recently renamed the Center for Problems of Marine Geology, Geoecology and Sedimentary Ore Formation of the NASUNational Academy of Sciences of Ukraine (NASU)KievUkraine
  2. 2.Department of Physical and Marine GeologyOdessa I.I.Mechnikov National UniversityOdessaUkraine

Personalised recommendations