Skip to main content

Effect of Surface Modification on Characteristics of Naturally Woven Coconut Leaf Sheath Fabric as Potential Reinforcement of Composites

  • Chapter
  • First Online:
  • 541 Accesses

Abstract

Increase in biological and ecological concern has made to find new natural fibers which are biodegradable, from renewable sources and flexibility to chemical modification. Naturally woven Coconut leaf sheath (CLS) fabric were investigated. Removal of impurities on alkali treatment was carried to check the performance of these CLS fabric. On alkali treatment tensile and thermal properties were enhanced due to increase in crystallinity. The eco-friendly coconut leaf sheath fabric was found to be a suitable reinforcement material in composite structure for biocomposite applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdul Khalil, H. P. S., Siti Alwani, M., Ridzuan, R., Kamarudin, H., & Khairul, A. (2008). Chemical composition, morphological characteristics, and cell wall structure of malaysian oil palm fibers. Polymer-Plastics Technology and Engineering, 47, 273–280.

    Article  CAS  Google Scholar 

  2. Faruk, O., Bledzkia, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37, 1552–1596.

    Article  CAS  Google Scholar 

  3. Reddy, N., & Yang, Y. (2005). Biofibers from agricultural by products for industrial applications. TRENDS in Biotechnology, 23, 22–27.

    Article  CAS  Google Scholar 

  4. Singha, A. S., & Thakur, V. K. (2009). Morphological, thermal, and physicochemical characterization of surface modified pinus fibers. International Journal of Polymer Analysis and Characterization, 14, 271–289.

    Google Scholar 

  5. John, M. J., & Thomas, S. (2008). Biofibres and Biocomposites. Carbohydrate Polymers, 71, 343–364.

    Article  CAS  Google Scholar 

  6. Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23, 123–133.

    Article  Google Scholar 

  7. Fiore, V., Valenza, A., & Di Bella, G. (2011). Artichoke (Cynara cardunculus L.) fibers as potential reinforcement of composite structures. Composites Science and Technology, 71, 1138–1144.

    Article  CAS  Google Scholar 

  8. Placet, V. (2009). Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Composites: Part A, 40, 1111–1118.

    Article  Google Scholar 

  9. Bharath, K. N., & Basavarajappa, S. (2014). Flammability characteristics of chemical treated woven natural fabric reinforced phenol formaldehyde composites. Procedia Materials Science, 5, 1880–1886.

    Article  CAS  Google Scholar 

  10. Indran, R. E., & Raj, V. S. S. (2014). Characterization of new natural cellulosic fiber from Cissusquadrangularis root. Carbohydrate Polymers, 110, 423–429.

    Article  CAS  Google Scholar 

  11. Jayaramudu, J., Guduri, B. R., & Rajulu, A. V. (2009). Tensile properties of polymethyl methacrylate coated natural fabric Sterculia urens. Materials Letters, 63, 812–814.

    Google Scholar 

  12. Ramamoorthy, S. K., Skrifvars, M., & Rissanen, M. (2015). Effect of alkali and silane surface treatments on regenerated cellulose fibre type (Lyocell) intended for composites. Cellulose, 22, 637–654.

    Article  CAS  Google Scholar 

  13. Jayaramudu, J., Reddy, G. S. M., Varaprasad, K., Sadiku, E. R., Sinha Ray, S., & Rajulu, A. V. (2013) Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites, Carbohydrate Polymers, 94, 822–828.

    Google Scholar 

  14. Bennet, C., Rajini, N., Winowlin Jappes, J. T., Siva, I., Sreenivasan, V. S., & Amico, S. C. (2015). Effect of the stacking sequence on vibrational behavior of Sansevieria cylindrica/coconut sheath polyester hybrid composites. Journal of Reinforced Plastics and Composites, 34, 293–306.

    Article  CAS  Google Scholar 

  15. Mulinari, D. R., Baptist, C. A. R. P., Souza, J. V. C., & Voorwald, H. J. C. (2011). Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering, 10, 2074–2079.

    Article  CAS  Google Scholar 

  16. Nitta, Y., Goda, K., Noda, J., Lee, & W.-I. (2013). Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Composites: Part A, 49, 132–138.

    Google Scholar 

  17. Ticoalu, A., Aravinthan, T., & Cardona, F. (2013). A study into the characteristics of gomuti (Arenga pinnata) fibre for usage as natural fibre composites. Journal of Reinforced Plastics and Composites, 33, 179–192.

    Article  Google Scholar 

  18. Porras, A., Maranon, A., & Ashcroft, I. A. (2015). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B, 74, 66–73.

    Article  CAS  Google Scholar 

  19. Sreenivasan, V.S., Rajini, N., Alavudeen, A., & Arumugaprabu, V. (2015). Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Composites: Part B, 69, 76–86.

    Google Scholar 

  20. Hossain, M. K., Karim, M. R., Chowdhury, M. R., Imam, M. A., Hosur, M., Jeelani, S., et al. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58, 78–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Bharath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharath, K.N., Basavarajappa, S., Indran, S., Binoj, J.S. (2020). Effect of Surface Modification on Characteristics of Naturally Woven Coconut Leaf Sheath Fabric as Potential Reinforcement of Composites. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-40301-0_14

Download citation

Publish with us

Policies and ethics