Skip to main content

Cellulose Based Bio Polymers: Synthesis, Functionalization and Applications in Heavy Metal Adsorption

  • Chapter
  • First Online:

Abstract

Water pollution due to tremendous increase in industrialization, urbanization and population become serious concerns since the last some decade and will be the major global nightmare. Various contaminations viz; dyes, heavy metals, pesticides, pharmaceutical effluents from industries are getting discharged into water bodies. Among these contaminants, Heavy metals are the main wastewater pollutants due to their ability to cause the nuisance to living beings and to persist in the environment. Hence lot of efforts are being taken for treating waste water contained with heavy metals. Materials scientist are trying to utilise various methods and materials for solving these problems. Cellulose the natural biopolymer is one of the materials gaining attention because of its extra ordinary physio-chemical, as well as mechanical properties compared to other natural biopolymer materials. The present book chapter deals with the preparations, modifications and its heavy metal adsorption studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.

    Article  CAS  Google Scholar 

  2. Uslu, H., Yankov, D., Isewar, K. L., Azizian, S., Ullah, N., & Ahmad, W. (2015). Separation of organic and inorganic compounds for specific applications. Journal of Chemistry2015.

    Google Scholar 

  3. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin68(1), 167–182.

    Article  Google Scholar 

  4. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2006). Inorganic and organic lead compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 87, p. 1).

    Google Scholar 

  5. Ottenhall, A., Henschen, J., Illergård, J., & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology, 4(12), 2070–2079.

    CAS  Google Scholar 

  6. Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V. S., Kettemann, F., et al. (2018). Functionalized cellulose for water purification, antimicrobial applications, and sensors. Advanced Functional Materials28(23), 1800409.

    Article  CAS  Google Scholar 

  7. Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., & Zoccola, M. (2014). Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23.

    Article  CAS  Google Scholar 

  8. Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung59(1), 102–107; Zhou, Y., Saito, T., Bergström, L., & Isogai, A. (2018). Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules19(2), 633–639.

    Google Scholar 

  9. Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18–26.

    Article  CAS  Google Scholar 

  10. Mazlita, Y., Lee, H. V., & Hamid, S. B. A. (2016). Preparation of cellulose nanocrystals bio-polymer from agro-industrial wastes: Separation and characterization. Polymers and Polymer Composites, 24(9), 719–728.

    Article  CAS  Google Scholar 

  11. Dufresne, A., Cavaille, J. Y., & Helbert, W. (1997). Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modeling. Polymer Composites, 18, 198–210. https://doi.org/10.1002/pc.10274.

    Article  CAS  Google Scholar 

  12. Lu, P., & Hsieh, Y.-L. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87, 564–573. https://doi.org/10.1016/j.carbpol.2011.08.022.

    Article  CAS  Google Scholar 

  13. Heux, L., Chauve, G., & Bonini, C. (2000). Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16(21), 8210–8212.

    Article  CAS  Google Scholar 

  14. Imai, T., Boisset, C., Samejima, M., Igarashi, K., & Sugiyama, J. (1998). Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Letters, 432, 113–116. https://doi.org/10.1016/S0014-5793(98)00845-X.

    Article  CAS  Google Scholar 

  15. Nair, K. G., Dufresne, A., Gandini, A., & Belgacem, M. N. (2003). Crab shell Chitin whiskers rein‐forced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules, 4, 1835–1842. https://doi.org/10.1021/bm030058g.

    Article  CAS  Google Scholar 

  16. Dufresne, A., & Cavaillé, J.-Y. (1998). Clustering and percolation effects in microcrystalline starch-reinforced thermoplastic. Journal of Polymer Science: Part B: Polymer Physics, 36, 2211–2224. https://doi.org/10.1002/(SICI)1099-0488(19980915)36:12<2211:AIDPOLB18>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  17. Dubief, D., Samain, E., & Dufresne, A. (1999). Polysaccharide microcrystals reinforced amorphous poly(â-hydroxyoctanoate) nanocomposite materials. Macromolecules, 32, 5765–5771. https://doi.org/10.1021/ma990274a.

    Article  CAS  Google Scholar 

  18. Angellier, H., Molina-Boisseau, S., Lebrun, L., & Dufresne, A. (2005). Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macro-molecules, 38, 3783–3792. https://doi.org/10.1021/la047530j.

    Article  CAS  Google Scholar 

  19. Zhao, Y., Moser, C., Lindström, M. E., Henriksson, G., & Li, J. (2017). Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation–structure–film performance interrelation. ACS Applied Materials & Interfaces, 9(15), 13508–13519.

    Article  CAS  Google Scholar 

  20. Adu, C., Berglund, L., Oksman, K., Eichhorn, S. J., Jolly, M., & Zhu, C. (2018). Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. Journal of Cleaner Production, 197, 765–771.

    Article  CAS  Google Scholar 

  21. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71–85.

    Article  CAS  Google Scholar 

  22. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 5438–5466.

    Article  CAS  Google Scholar 

  23. Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459.

    Article  CAS  Google Scholar 

  24. Fall, A. B., Lindström, S. B., Sundman, O., Ödberg, L., & Wågberg, L. (2011). Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir, 27, 11332–11338.

    Article  CAS  Google Scholar 

  25. Noguchi, Y., Homma, I., & Matsubara, Y. (2017). Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose, 24(3), 1295–1305.

    Article  CAS  Google Scholar 

  26. Yang, H., Chen, D., & van de Ven, T. G. (2015). Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose, 22(3), 1743–1752.

    Article  CAS  Google Scholar 

  27. Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M., & Isogai, A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7, 1687–1691.

    Article  CAS  Google Scholar 

  28. Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.

    Article  CAS  Google Scholar 

  29. Shinoda, R., Saito, T., Okita, Y., & Isogai, A. (2012). Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13(3), 842–849.

    Article  CAS  Google Scholar 

  30. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., et al. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.

    Article  CAS  Google Scholar 

  31. Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., & Strømme, M. (2010). A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. The Journal of Physical Chemistry B, 114(12), 4178–4182.

    Article  CAS  Google Scholar 

  32. Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., et al. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate polymers, 98(1), 562–567.

    Article  CAS  Google Scholar 

  33. Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.

    Article  CAS  Google Scholar 

  34. Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1), 102–107.

    Article  CAS  Google Scholar 

  35. Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A., et al. (2011). From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules, 12(7), 2456–2465.

    Article  CAS  Google Scholar 

  36. Souza, A. G., Rocha, D. B., & Rosa, D. S. (2017). Cellulose nanowhiskers obtained from waste recycling of paper industry. In Materials design and applications (pp. 101–111). Cham: Springer.

    Google Scholar 

  37. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., et al. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers81(1), 83–92.

    Article  CAS  Google Scholar 

  38. Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1), 122–129.

    Article  CAS  Google Scholar 

  39. Hong, F., Zhu, Y. X., Yang, G., & Yang, X. X. (2011). Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. Journal of Chemical Technology & Biotechnology, 86(5), 675–680.

    Article  CAS  Google Scholar 

  40. Guo, X., Chen, L., Tang, J., Jönsson, L. J., & Hong, F. F. (2016). Production of bacterial nanocellulose and enzyme from [AMIM] Cl-pretreated waste cotton fabrics: Effects of dyes on enzymatic saccharification and nanocellulose production. Journal of Chemical Technology & Biotechnology, 91(5), 1413–1421.

    Article  CAS  Google Scholar 

  41. Kuo, C. H., Lin, P. J., & Lee, C. K. (2010). Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. Journal of Chemical Technology & Biotechnology, 85(10), 1346–1352.

    Article  CAS  Google Scholar 

  42. Mautner, A., Maples, H. A., Kobkeatthawin, T., Kokol, V., Karim, Z., Li, K., et al. (2016). Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 13(8), 1861–1872.

    Article  CAS  Google Scholar 

  43. Taha, A. A., Wu, Y. N., Wang, H., & Li, F. (2012). Journal of Environmental Management, 112, 10–16. https://doi.org/10.1016/j.jenvman.2012.05.031.

    Article  CAS  Google Scholar 

  44. Anirudhan, T. S., Divya, L., & Parvathy, J. (2013). Journal of Chemical Technology and Biotechnology, 88(5), 878–886.

    Article  CAS  Google Scholar 

  45. Liu, P., Sehaqui, H., Tingaut, P., Wichser, A., Oksman, K., & Mathew, A. P. (2014). Cellulose, 21(1), 449–461.

    Article  CAS  Google Scholar 

  46. Espino-Pérez, E., Domenek, S., Belgacem, N., Sillard, C., & Bras, J. (2014). Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules, 15(12), 4551–4560.

    Article  CAS  Google Scholar 

  47. Suopajärvi, T., Liimatainen, H., Karjalainen, M., Upola, H., & Niinimäki, J. (2015). Lead adsorption with sulfonated wheat pulp nanocelluloses. Journal of Water Process Engineering, 5, 136–142.

    Article  Google Scholar 

  48. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., & Sillanpää, M. (2014). Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose, 21(3), 1471–1487.

    Article  CAS  Google Scholar 

  49. Gurgel, L. V., Perin de Melo, J. C., de Lena, J. C., & Gil, L. F. (2009). Bioresource Technology, 100(13), 3214–3220. https://doi.org/10.1016/j.biortech.2009.01.068.

    Article  CAS  Google Scholar 

  50. Castro, G. R. d., Alcantara, I. L. d., Roldan, P. d. S., Bozano, D. d. F., Padilha, P. d. M., Florentino, A. d. O. et al. (2004). Journal of Materials Research 7(2), 329–334.

    Article  Google Scholar 

  51. Zhang, C., Su, J., Zhu, H., Xiong, J., Liu, X., Li, D., et al. (2017). The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Advances, 7(54), 34182–34191.

    Article  CAS  Google Scholar 

  52. Madivoli, E.S., Kareru, P.G., Gachanja, A.N., Mugo, S., Murigi, M.K., Kairigo, P.K., Kipyegon, C., Mutembei, J.K. and Njonge, F.K., 2016. Adsorption of selected heavy metals on modified nano cellulose. International Research Journal of Pure and Applied Chemistry, pp.1–9.

    Article  CAS  Google Scholar 

  53. Donia, A. M., Atia, A. A., & Abouzayed, F. I. (2012). Chemical Engineering Journal, 191, 22–30. https://doi.org/10.1016/j.cej.2011.08.034.

    Article  CAS  Google Scholar 

  54. Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., et al. (2013). Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 25(5), 933–943.

    Article  CAS  Google Scholar 

  55. Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38(11), 2643–2650.

    Article  CAS  Google Scholar 

  56. Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223, 40–47.

    Article  CAS  Google Scholar 

  57. Karim, Z., Hakalahti, M., Tammelin, T., & Mathew, A. P. (2017). In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Advances, 7(9), 5232–5241.

    Article  CAS  Google Scholar 

  58. Gurnani, V., Singh, A. K., & Venkataramani, B. (2003). Cellulose functionalized with 8-hydroxyquinoline: New method of synthesis and applications as a solid phase extractant in the determination of metal ions by flame atomic absorption spectrometry. Analytica Chimica Acta485(2), 221–232.

    Google Scholar 

  59. Zhang, N., Zang, G. L., Shi, C., Yu, H. Q., & Sheng, G. P. (2016). A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 316, 11–18.

    Article  CAS  Google Scholar 

  60. Sehaqui, H., de Larraya, U. P., Liu, P., Pfenninger, N., Mathew, A. P., Zimmermann, T., & Tingaut, P. (2014). Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose21(4), 2831–2844.

    Google Scholar 

  61. Setyono, D., & Valiyaveettil, S. (2016). Functionalized paper—A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. Journal of Hazardous Materials, 302, 120–128.

    Article  CAS  Google Scholar 

  62. Saliba, R., Gauthier, H., & Gauthier, R. (2005). Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials. Adsorption Science & Technology, 23(4), 313–322.

    Article  CAS  Google Scholar 

  63. Gurgel, L. V. A., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43(18), 4479–4488.

    Article  CAS  Google Scholar 

  64. Low, K. S., Lee, C. K., & Mak, S. M. (2004). Sorption of copper and lead by citric acid modified wood. Wood Science and Technology, 38(8), 629–640.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaykiran N. Narwade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narwade, V.N., Pottathara, Y.B., Begum, S., Khairnar, R.S., Bogle, K.A. (2020). Cellulose Based Bio Polymers: Synthesis, Functionalization and Applications in Heavy Metal Adsorption. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-40301-0_12

Download citation

Publish with us

Policies and ethics