Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

Before entangling gates can be performed on the ions, a number of other operations such as cooling, state preparation, readout and setting the correct magnetic field have to work well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    between the states \(4S_{1/2}^{4,+4}\) and \(3D_{3/2}^{m_F=5}\) via \(4P_{1/2}^{4,+4}\).

References

  1. Berkeland DJ, Miller JD, Bergquist JC, Itano WM, Wineland DJ (1998) Minimization of ion micromotion in a Paul trap. J Appl Phys 83:5025–5033. ISSN: 00218979

    Google Scholar 

  2. Brownnutt M, Kumph M, Rabl P, Blatt R (2015) Ion-trap measurements of electric-field noise near surfaces. Rev Mod Phys 87:1419–1482. ISSN: 15390756

    Google Scholar 

  3. Sedlacek JA et al (2018) Distance scaling of electric-field noise in a surface electrode ion trap. Phys Rev A 97:020302. ISSN: 24699934

    Google Scholar 

  4. Ballance CJ (2014) High-fidelity quantum logic in Ca+. PhD thesis, University of Oxford

    Google Scholar 

  5. Turchette QA et al (2000) Heating of trapped ions from the quantum ground state. Phys Rev A 61:063418. ISSN: 1050-2947

    Google Scholar 

  6. Hume DB, Chou CW, Rosenband T, Wineland DJ (2009) Preparation of Dicke states in an ion chain. Phys Rev A 80:052302. ISSN: 10502947

    Google Scholar 

  7. Home JP, Hanneke D, Jost JD, Leibfried D, Wineland DJ (2011) Normal modes of trapped ions in the presence of anharmonic trap potentials. New J Phys 13:073026. ISSN: 13672630

    Google Scholar 

  8. Allcock DTC et al (2016) Dark-resonance Doppler cooling and high fluorescence in trapped Ca-43 ions at intermediate magnetic field. New J Phys 18

    Google Scholar 

  9. Webster S (2005) Raman sideband cooling and coherent manipulation of trapped ions. PhD thesis, University of Oxford

    Google Scholar 

  10. Monroe C et al (1995) Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys Rev Lett 75:4011–4014. ISSN: 00319007

    Google Scholar 

  11. Harty TP (2013) High-fidelity microwave-driven quantum logic in intermediate field 43Ca+. PhD thesis, University of Oxford

    Google Scholar 

  12. Merkel B et al (2019) Magnetic field stabilization system for atomic physics experiments. Rev Sci Instrum 90. ISSN: 044702

    Google Scholar 

  13. O’Malley PJJ et al (2015) Qubit metrology of ultralow phase noise using randomized benchmarking. Phys Rev Appl 3:044009. ISSN: 23317019

    Google Scholar 

  14. Turchette QA et al (2000) Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys Rev A 62:053807. ISSN: 10502947

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera M. Schäfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schäfer, V.M. (2020). Experiment Characterisation. In: Fast Gates and Mixed-Species Entanglement with Trapped Ions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-40285-3_5

Download citation

Publish with us

Policies and ethics