Skip to main content

Introduction

  • Chapter
  • First Online:
  • 270 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Over 100 years after its discovery, quantum physics continues to fascinate physicists and fuel modern research all over the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The security of RSA, the encryption algorithm used in most public key cryptography systems, relies on the fact that factorisation of large numbers is a hard problem and can’t be solved time efficiently.

References

  1. Kienzler D, et al (2016) Observation of quantum interference between separated mechanical oscillator wave packets. Phys Rev Lett 116:140402. ISSN: 1079-7114

    Google Scholar 

  2. Hensen B, et al (2015) Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526:682–686. ISSN: 0028-0836

    Google Scholar 

  3. Bouwmeester D, et al (1997) Experimental quantum teleportation. Nature 390:575–579. ISSN: 0028-0836

    Google Scholar 

  4. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488. ISSN: 0020-7748

    Google Scholar 

  5. Benioff P (1982) Quantum mechanical Hamiltonian models of turing machines. J Stat Phys 29:515–546. ISSN: 0031-9007

    Google Scholar 

  6. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117

    Article  ADS  MathSciNet  Google Scholar 

  7. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc Lond A 439:553–558

    Google Scholar 

  8. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science. pp 124–134. ISSN: 0272-5428

    Google Scholar 

  9. Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094. ISSN: 0031-9007

    Google Scholar 

  10. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77:793–797. ISSN: 1079-7114

    Google Scholar 

  11. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev 52:2493–2496. ISSN: 1050-2947

    Google Scholar 

  12. Grover, LK (1996) A fast quantum mechanical algorithm for database search. In: 28th Annual ACM Symposium on the Theory of Computing. pp 212–219. ISBN: 0897917855

    Google Scholar 

  13. DiVincenzo DP, Loss D (1998) Quantum information is physical. Superlattices Microstruct 23:419–432. ISSN: 0749-6036

    Google Scholar 

  14. Monroe C, Meekhof DM, King BE, Itano WM, Wineland DJ (1995) Demonstration of a fundamental quantum logic gate. Phys Rev Lett 75:4714–4717. ISSN: 0031-9007

    Google Scholar 

  15. Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of fast quantum searching. Phys Rev Lett 80:3408–3411. ISSN: 1079-7114

    Google Scholar 

  16. Jones JA, Mosca M (1998) Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. J Chem Phys 109:1648. ISSN: 0021-9606

    Google Scholar 

  17. Lanyon BP, et al (2007) Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys Rev Lett 99:250505. ISSN: 0031-9007

    Google Scholar 

  18. DiCarlo L, et al (2009) Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460:240–244. ISSN: 0028-0836

    Google Scholar 

  19. Monz T, et al (2016) Realization of a scalable Shor algorithm. Science 351:1068–1070. ISSN: 0036-8075

    Google Scholar 

  20. Figgatt C, et al (2017) Complete 3-Qubit Grover search on a programmable quantum computer. Nat Commun 8. ISSN: 2041-1723

    Google Scholar 

  21. Häffner H, Roos CF, Blatt R (2008) Quantum computing with trapped ions. Phys Rep 469:155–203. ISSN: 0370-1573

    Google Scholar 

  22. Wendin G (2017) Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics 80, 106001. ISSN: 0034-4885

    Google Scholar 

  23. Kloeffel C, Loss D (2013) Prospects for spin-based quantum computing in quantum dots. Annu Rev Condens Matter Phys 4:51–81. ISSN: 1947-5454

    Google Scholar 

  24. Childress L, Hanson R (2013) Diamond NV centers for quantum computing and quantum networks. MRS Bull 38:134–138. ISSN: 0883-7694

    Google Scholar 

  25. Kok P, et al (2007) Linear optical quantum computing with photonic qubits. Rev Mod Phys 79:135–174. ISSN: 0034-6861

    Google Scholar 

  26. Harty TP, et al (2014) High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys Rev Lett 113:220501. ISSN: 0031-9007

    Google Scholar 

  27. Wang Y, et al (2017) Single-qubit quantum memory exceeding ten-minute coherence time. Nat Photonics 11:646–650. ISSN: 0028-0836

    Google Scholar 

  28. Ballance CJ, Harty TP, Linke NM, Sepiol MA, Lucas DM, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett 117:060504. ISSN: 1079-7114

    Google Scholar 

  29. Gaebler JP, et al (2016) High-fidelity universal gate set for 9Be+ ion qubits. Phys Rev Lett 117:060505. ISSN: 1079-7114

    Google Scholar 

  30. Debnath S, et al (2016) Demonstration of a small programmable quantum computer with atomic qubits. Nature 536:63–66. ISSN: 1476-4687

    Google Scholar 

  31. Barends R, et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508:500–503. ISSN: 0028-0836

    Google Scholar 

  32. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417:709–711. ISSN: 0028-0836

    Google Scholar 

  33. Bowler R et al (2012) Coherent diabatic ion transport and separation in a multizone trap array. Phys Rev Lett 109:80502

    Article  ADS  Google Scholar 

  34. Ruster T, et al (2014) Experimental realization of fast ion separation in segmented Paul traps. Phys Rev A 90:033410. ISSN: 1094-1622

    Google Scholar 

  35. Mehta KK, et al (2016) Integrated optical addressing of an ion qubit. Nat Nanotechnol 11:1066–1070. ISSN: 1748-3395

    Google Scholar 

  36. Monroe C, Kim J (2013) Scaling the ion trap quantum processor. Science 339:1164–1169. ISSN: 1095-9203

    Google Scholar 

  37. Kielpinski D, et al (2000) Sympathetic cooling of trapped ions for quantum logic. Phys Rev A 61:032310. ISSN: 1050-2947

    Google Scholar 

  38. Schmidt PO, et al (2005) Spectroscopy using quantum logic. Science 309:749–752. ISSN: 0036-8075

    Google Scholar 

  39. Monroe C, et al (2014) Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys Rev A 89:022317. ISSN: 1050-2947

    Google Scholar 

  40. García-Ripoll JJ, Zoller P, Cirac JI (2003) Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys Rev Lett 91:157901. ISSN: 0031-9007

    Google Scholar 

  41. Duan L-M (2004) Scaling ion trap quantum computation through fast quantum gates. Phys Rev Lett 93:100502

    Article  ADS  Google Scholar 

  42. García-Ripoll JJ, Zoller P, Cirac JI (2005) Coherent control of trapped ions using off-resonant lasers. Phys Rev A 71:062309. ISSN: 1050-2947

    Google Scholar 

  43. Bentley CDB, Carvalho ARR, Kielpinski D, Hope J (2013) Fast gates for ion traps by splitting laser pulses. New J Phys 15. ISSN: 1367-2630

    Google Scholar 

  44. Steane AM, Imreh G, Home JP, Leibfried D (2014) Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New J Phys 16. ISSN: 1367-2630

    Google Scholar 

  45. Palmero M, Martinez-Garaot S, Leibfried D, Wineland DJ, Muga JG (2017) Fast phase gates with trapped ions. Phys Rev A 95:022328

    Article  ADS  Google Scholar 

  46. Ballance CJ, et al (2015) Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature 528:384–386. ISSN: 0028-0836

    Google Scholar 

  47. Schäfer, VM, et al (2017) Fast quantum logic gates with trapped-ion qubits. Nature 555:75–78. ISSN: 0028-0836

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera M. Schäfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schäfer, V.M. (2020). Introduction. In: Fast Gates and Mixed-Species Entanglement with Trapped Ions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-40285-3_1

Download citation

Publish with us

Policies and ethics