Skip to main content

Plant Roots—The Hidden Half for Investigating Salt and Drought Stress Responses and Tolerance

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plant roots are not just a mere organ involved in soil anchoring and nutrient absorption. But it is a tool used by plants to survive against adverse conditions that surround them since plants are sessile organisms which cannot move to escape stressful conditions. This chapter will focus on exposing the strategies that plants use to cope with two stress situations, namely drought and salinity. These strategies range from changes in the root external morphology as changes at the cellular level, where the permeability of the membranes and gene expression are changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  PubMed  Google Scholar 

  • Aharon Refael, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsina MM, Smart DR, Bauerle T, De Herralde F, Biel C, Stockert C, Negron C, Save R (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    Article  CAS  PubMed  Google Scholar 

  • An J, Hu Z, Che B, Chen H, Yu B, Cai W (2017) Heterologous expression of panax ginseng PgTIP1 confers enhanced salt tolerance of soybean cotyledon hairy roots, composite, and whole plants. Front Plant Sci 8:1–15

    Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arraes FBM, Beneventi MA, Lisei de Sa ME, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:1–20

    Article  CAS  Google Scholar 

  • Atkinson JA, Rasmussen A, Traini R, Voss U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ (2014) Branching out in roots: uncovering form, function, and regulation. Plant Physiol 166:538–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babé A, Lavigne T, Séverin JP, Nagel KA, Walter A, Chaumont F, Batoko H, Beeckman T, Draye X (2012) Repression of early lateral root initiation events by transient water deficit in barley and maize. Philos Trans R Soc B: Biol Sci 367:1534–1541

    Article  CAS  Google Scholar 

  • Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T et al (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci USA 111:9319–9324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE et al (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164:447–459

    Article  CAS  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27:349–363

    Article  PubMed  CAS  Google Scholar 

  • Barzegargolchini B, Movafeghi A, Dehestani A, Mehrabanjoubani P (2017) Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J Plant Physiol 218:127–134

    Article  CAS  PubMed  Google Scholar 

  • Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    Article  CAS  PubMed  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Ann Rev Plant Biol 65:639–666

    Article  CAS  Google Scholar 

  • Bennett MJ, Duan L, Bhalerao R, Chan PMY, Ng CH, Dinneny JR, Dietrich D (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boursiac Y (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008a) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Prak S, Boudet J, Postaire O, Luu D-T, Tournaire-Roux C, Santoni V, Maurel C (2008b) The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species-and phosphorylation-dependent internalization of aquaporins. Plant Signal Behav 3:18573191

    Article  Google Scholar 

  • Cabañero FJ, Martínez-Ballesta MC, Teruel JA, Carvajal M (2006) New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. Plant Cell Physiol 47:224–233

    Article  PubMed  CAS  Google Scholar 

  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Bin Xiang C (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:1–13

    Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R (2014) Mild salt stress conditions induce different responses in root hydraulic conductivity of Phaseolus vulgaris over-time. PLoS ONE 9

    Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Peñas G, Messeguer J, San Segundo B (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  CAS  PubMed  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Xu Y, Yuan L, Bian Y, Wang L, Zhen S, Hu Y, Yan Y (2016) Molecular characterization of the 14-3-3 gene family in Brachypodium distachyon L. reveals high evolutionary conservation and diverse responses to abiotic stresses. Front Plant Sci 7:1099

    Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Carvajal M, Cerdá A, Martínez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol 145:439–447

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Fu H, Liu D, Chang PL, Narasimhan M, Ferl R, Hasegawa PM, Bressan RA (1994) A NaCl-regulated plant gene encoding a brain protein homolog that activates ADP ribosyltransferase and inhibits protein kinase C. Plant J 6:729–740

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2015) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Feng L, Wei N, Liu ZH, Hu S, Li XB (2017a) Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress. Plant Physiol Biochem 115:229–238

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Zhang X, Yang Z, Wang X, Yang Z, Zhang C, Wu Z, Kong D, Liu Z, Zhao G et al (2017b) Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis. Mol Genet Genomics 292:593–609

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yang S, Kong X, Wang C, Xiang N, Yang Y, Yang Y (2018) Molecular cloning of a plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene 665:41–48

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00442

  • Coudert Y, Le Thi A, Gantet P (2013) Rice: a model plant to decipher the hidden origin of adventitious roots. In: Plant roots: the hidden half, 4th edn, pp 145–154

    Google Scholar 

  • Cui XY, Du YT, Fu J dong, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS (2018) Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18:93

    Google Scholar 

  • Dai J, Duan L, Dong H (2015) Comparative effect of nitrogen forms on nitrogen uptake and cotton growth under salinity stress. J Plant Nutr 38:1530–1543

    Article  CAS  Google Scholar 

  • Dathe A, Postma JA, Postma-Blaauw MB, Lynch JP (2016) Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Ann Bot 118:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bauw P, Vandamme E, Lupembe A, Mwakasege L, Senthilkumar K, Merckx R (2019) Architectural root responses of rice to reduced water availability can overcome phosphorus stress. Agronomy 9

    Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D (2000) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    Google Scholar 

  • Díaz AS, Aguiar GM, Pereira MP, Mauro de Castro E, Magalhães PC, Pereira FJ (2018) Aerenchyma development in different root zones of maize genotypes under water limitation and different phosphorus nutrition. Biol Plant 62:561–568

    Article  CAS  Google Scholar 

  • Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S (2015a) The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci 234:14–21

    Article  CAS  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015b) Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 84:56–69

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Li Y, Wang Y, Gao L, Wang M, Chaumont F, Shen Q, Guo S (2016) Root ABA accumulation enhances rice seedling drought tolerance under ammonium supply: interaction with aquaporins. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01206

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos Araújo G, de Souza Miranda R, Mesquita RO, de Oliveira Paula S, Prisco JT, Gomes-Filho E (2018) Nitrogen assimilation pathways and ionic homeostasis are crucial for photosynthetic apparatus efficiency in salt-tolerant sunflower genotypes. Plant Growth Regul 86:375–388

    Article  CAS  Google Scholar 

  • Doussan C, Pagès L, Vercambre G (1998) Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description. Ann Bot 81:213–223

    Article  Google Scholar 

  • Eapen D, Martínez-Guadarrama J, Hernández-Bruno O, Flores L, Nieto-Sotelo J, Cassab GI (2017) Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Plant Sci 265:87–99

    Article  CAS  PubMed  Google Scholar 

  • Elhady A, Adss S, Hallmann J, Heuer H (2018) Rhizosphere microbiomes modulated by pre-crops assisted plants in defense against plant-parasitic nematodes. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01133

  • Fan C, Wang X, Pang Y, Di S, Zheng G, Xiang C (2017) Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Front Plant Sci 8:1–14

    Google Scholar 

  • Feng X, Liu W, Zeng F, Chen Z, Zhang G, Wu F (2015) K+ uptake, H+-ATPase pumping activity and Ca2+ efflux mechanism are involved in drought tolerance of barley. Environ Exp Bot 129:57–66

    Article  CAS  Google Scholar 

  • Fenta B, Beebe S, Kunert K, Barlow K, Burridge J, Lynch J, Foyer C (2014) Field phenotyping of soybean roots for drought stress tolerance. Agron 4:418–435

    Article  Google Scholar 

  • Fitter A (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69:594–599

    Article  CAS  PubMed  Google Scholar 

  • Fitters TFJ, Bussell JS, Mooney SJ, Sparkes DL (2017) Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes. Environ Exp Bot 144:61–67

    Article  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomàs M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  CAS  Google Scholar 

  • Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67:4545–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic arabidopsis. Plant Cell Physiol 51:767–775

    Article  CAS  PubMed  Google Scholar 

  • García-Martí M, Piñero MC, García-Sanchez F, Mestre TC, López-Delacalle M, Martínez V, Rivero RM (2019) Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants 8:81

    Article  PubMed Central  CAS  Google Scholar 

  • Gaspar M, Bousser A, Sissoëff I, Roche O, Hoarau J, Mahé A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31

    Article  CAS  Google Scholar 

  • Geisler M, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol 16:50–57

    Article  PubMed  Google Scholar 

  • George E, Horst WJ, Neumann E (2011) Adaptation of plants to adverse chemical soil conditions. In: Marschner’s mineral nutrition of higher plants, 3rd edn, pp 409–472

    Google Scholar 

  • Gerbeau P, Güçlü J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  CAS  PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in arabidopsis. Plant Cell 12:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  PubMed  Google Scholar 

  • González-Fontes A, Herrera-Rodríguez MB, Martín-Rejano EM, Navarro-Gochicoa MT, Rexach J, Camacho-Cristóbal JJ (2016) Root responses to boron deficiency mediated by ethylene. Front Plant Sci 6:1–6

    Article  Google Scholar 

  • Gorska A, Zwieniecka A, Michele Holbrook N, Zwieniecki MA (2008) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998

    Article  CAS  PubMed  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77

    Article  CAS  PubMed  Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu R, Chen X, Zhou Y, Yuan L (2011) Isolation and characterization of three maize aquaporin genes. BMB Rep 45:96–101

    Article  CAS  Google Scholar 

  • Guo S, Kaldenhoff R, Uehlein N, Sattelmacher B, Brueck H (2007a) Relationship between water and nitrogen uptake in nitrate- and ammonium-supplied Phaseolus vulgaris L. plants. J Plant Nut Soil Sci 170:73–80

    Article  CAS  Google Scholar 

  • Guo S, Shen Q, Brueck H (2007b) Effects of local nitrogen supply on water uptake of bean plants in a split root system. J Int Plant Biol 49:472–480

    Article  CAS  Google Scholar 

  • Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J. https://doi.org/10.1016/j.cj.2017.08.005

    Article  Google Scholar 

  • Guo XY, Wang Y, Zhao PX, Xu P, Yu GH, Zhang LY, Xiong Y, Bin Xiang C (2019) AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa. New Phytol 223:1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Guseman JM, Webb K, Srinivasan C, Dardick C (2017) DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Plavcová L, Almeida-Rodriguez A, King-Jones S, Zhou W, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol 30:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Fujiwara T (2007) Channel-mediated boron transport in rice. Plant Cell Physiol 48:227

    Google Scholar 

  • Harris JM (2015) Abscisic acid: Hidden architect of root system structure. Plants 4:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10

    Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2011) Functions of macronutrients. Elsevier Ltd

    Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J (2015) Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J Exp Bot 66:2271–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry A, Cal AJ, Batoto TC, Torres RO, Serraj R (2012) Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot 63:4751–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Li M, Shao Y, Sun T, Li C, Ma F (2018a) Ammonium uptake increases in response to PEG-induced drought stress in Malus hupehensis Rehd. Environ Exp Bot 151:32–42

    Article  CAS  Google Scholar 

  • Huang L, Li M, Zhou K, Sun T, Hu L, Li C, Ma F (2018b) Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiol Biochem 127:185–193

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE 9

    Google Scholar 

  • Ishikawa-Sakurai J, Hayashi H, Murai-Hatano M (2014) Nitrogen availability affects hydraulic conductivity of rice roots, possibly through changes in aquaporin gene expression. Plant Soil 379:289–300

    Article  CAS  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PBK, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C (1998) Water transport activity of plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Google Scholar 

  • Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, de Boer G-J, Haring MA, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with ROOT-fit reveals diversity in responses to salinity. Plant Physiol 166:1387–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung H, Lee DK, Do Choi Y, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  CAS  PubMed  Google Scholar 

  • Kawa D, Julkowska M, Montero Sommerfeld H, ter Horst A, Haring MA, Testerink C (2016) Phosphate-dependent root system architecture responses to salt stress. Plant Physiol 172:690–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke S-D, Chen X, Oliver DJ, Liu H-Y, Xu P, Zhu J-K, Wang Y, Xiang C-B, Yu H, Hong Y-Y (2008) Activated expression of an Arabidopsis HD-start protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirk GJD, Van Du L (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200

    Article  CAS  Google Scholar 

  • Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot 62:717–733

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Kobayashi H, Maesato M, Hayashi M, Yamamoto T, Yoshioka S, Matsumura S, Sugiyama T, Kawaguchi S, Kubota Y et al (2017) Discovery of hexagonal structured Pd–B nanocrystals. Angew Chem Int Ed 56:6578–6582

    Article  CAS  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01335

  • Korhonen A, Lehto T, Heinonen J, Repo T (2018) Whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal Scots pine seedlings (T Näsholm, ed). Tree Physiol 39

    Google Scholar 

  • Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62:4215–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kushwah S, Jones AM, Laxmi A (2011) Cytokinin interplay with ethylene, auxin, and glucose signaling controls arabidopsis seedling root directional growth. Plant Physiol 156:1851–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont B (1972) The morphology and anatomy of proteoid roots in the genus Hakea. Aust J Bot 20:155–174

    Article  Google Scholar 

  • Lanza M, Garcia-Ponce B, Castrillo G, Catarecha P, Sauer M, Rodriguez-Serrano M, Páez-García A, Sánchez-Bermejo E, Tc M, Leo del Puerto Y et al (2012) Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell 22:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Yoon S, Kim YS, Kim JK (2017) Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signal Behav 12(1):e1268311

    Google Scholar 

  • Li G, Tillard P, Gojon A, Maurel C (2016a) Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Plant Cell Physiol 57:733–742

    Article  CAS  PubMed  Google Scholar 

  • Li R, Wang J, Li S, Zhang L, Qi C, Weeda S, Zhao B, Ren S, Guo YD (2016b) Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in Tomato. Sci Rep 6. https://doi.org/10.1038/srep31814

  • Li X, Zeng R, Liao H (2016c) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202

    Article  PubMed  Google Scholar 

  • Li X, Li G, Li Y, Kong X, Zhang L, Wang J, Li X, Yang Y (2018) ABA receptor subfamily III enhances abscisic acid sensitivity and improves the drought tolerance of arabidopsis. Int J Mol Sci 19

    Google Scholar 

  • Li Y, Niu W, Cao X, Wang J, Zhang M, Duan X, Zhang Z (2019) Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol 19:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtfouse E (ed) (2013) Sustainable agriculture reviews. Springer, Dordrecht

    Google Scholar 

  • Liu C, Zhang T (2017) Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genom 18:1–16

    Article  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, Von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128:58–69

    Article  CAS  Google Scholar 

  • Liu Q, Zhang S, Liu B (2016) 14-3-3 proteins: macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochem Biophys Res Commun 477:9–13

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun G, Zhong Z, Ji L, Zhang Y, Zhou J, Zheng X, Deng K (2017) Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza. Protoplasma 254:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Loque D, Ludewig U, Yuan L, Von Wire N (2005) Tonoplast facilitate NH 3 transport into the vacuole 1. Plant Physiol 137:671–680

    Google Scholar 

  • Lu L, Dong C, Liu R, Zhou B, Wang C, Shou H (2018) Roles of soybean plasma membrane intrinsic protein GmPIP2;9 in drought tolerance and seed development. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00530

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2018) Rightsizing root phenotypes for drought resistance. J Exp Bot 69:3279–3292

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol

    Google Scholar 

  • Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H (2019) GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci 9

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Ballesta MC, Cabañero F, Olmos E, Periago PM, Maurel C, Carvajal M (2008) Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta 228:15–25

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Alonzo R, López-Portillo J, Moctezuma C, Bartlett MK, Sack L (2016) Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physiol 36:1562–1572

    Article  PubMed  CAS  Google Scholar 

  • Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z (2018) Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103108

  • Miyazawa Y, Takahashi H, Kaneyasu T, Fujii N, Kobayashi A, Nakayama M (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: conservation and invention of regulators and effectors. Small GTPases 1:78–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakajima Y, Nara Y, Kobayashi A, Sugita T, Miyazawa Y, Fujii N, Takahashi H (2017) Auxin transport and response requirements for root hydrotropism differ between plant species. J Exp Bot 68:3441–3456

    Article  CAS  PubMed  Google Scholar 

  • Naz N, Fatima S, Hameed M, Muhammad A, Naseer M, Ahmad F, Zahoor A (2018) Structural and functional aspects of salt tolerance in differently adapted ecotypes of Aeluropus lagopoides from saline desert habitats. Int J Agric Biol 20:41–51

    CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85:909–919

    Article  CAS  Google Scholar 

  • Nie Q, Gao GL, Fan Q jie, Qiao G, Wen XP, Liu T, Peng ZJ, Cai YQ (2015) Isolation and characterization of a catalase gene ‘HuCAT3’ from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene 563:63–71

    Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    Article  CAS  PubMed  Google Scholar 

  • Nobel P (1984) Extreme temperatures and thermal tolerances for seedlings of desert succulents. Oecologia 62:310–317

    Article  PubMed  Google Scholar 

  • Northey JGB, Liang S, Jamshed M, Deb S, Foo E, Reid JB, Mccourt P, Samuel MA (2016) Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants 2:1–7

    Article  CAS  Google Scholar 

  • Ogawa A, Kitamichi K, Toyofuku K, Kawashima C (2006) Quantitative analysis of cell division and cell death in seminal root of rye under salt stress. Plant Prod Sci 9:56–64

    Article  Google Scholar 

  • Olatunji D, Geelen D, Verstraeten I (2017) Control of endogenous auxin levels in plant root development. Int J Mol Sci 18. https://doi.org/10.3390/ijms18122587

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ (2012) 14-3-3 Phosphoprotein interaction networks—does isoform diversity present functional interaction specification? Front Plant Sci 3:1–14

    Article  CAS  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  • Peret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166:1713–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I et al (2012) The grapevine root-specific aquaporin VvPIP2;4n controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters C, Kim SC, Devaiah S, Li M, Wang X (2014) Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 37:2002–2013

    Article  CAS  PubMed  Google Scholar 

  • Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166:5–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Mol Cell Proteomics 7:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Puértolas J, Conesa MR, Ballester C, Dodd IC (2015) Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J Exp Bot 66:2325–2334

    Article  PubMed  CAS  Google Scholar 

  • Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM (2019) Regulation of K+ nutrition in plants. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00281

  • Rahman MS, Matsumuro T, Miyake H, Takeoka Y (2001) Effects of salinity stress on the seminal root tip ultrastructures of rice seedlings (Oryza sativa L.). Plant Prod Sci 4:103–111

    Article  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era-New interest for an old polymer. Plant Sci 180:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L, Bi YM, Rothstein SJ (2016) Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 243:231–249

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Mishra S, Bisen K, Singh S, Sarma BK, Singh HB (2018) Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol Res 207:100–107

    Article  CAS  PubMed  Google Scholar 

  • Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Lobet G, Lindner H, Pradier PL, Sebastian J, Yee MC, Geng Y, Trontin C, Larue T, Schrager-Lavelle A et al (2015) GLO-roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife. https://doi.org/10.7554/elife.07597

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Wang M, Chen Y, Sun G, Li Y, Shen Q, Guo S (2015) Water absorption is affected by the nitrogen supply to rice plants. Plant Soil 396:397–410

    Article  CAS  Google Scholar 

  • Riaz M, Yan L, Wu X, Hussain S, Aziz O, Jiang C (2018) Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots. Ecotoxicol Environ Saf 165:202–210

    Article  CAS  PubMed  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1–16

    Article  Google Scholar 

  • Robert M, Salinas J, Collinge D (2002) 14-3-3 Proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  Google Scholar 

  • Rodriguez HG, Roberts J, Jordan WR, Drew MC (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol 113:881–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales MA, Maurel C, Nacry P (2019) Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiol 180:2198–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengwilai P, Tian X, Lynch JP (2014) Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol 166:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Sahr T, Voigt G, Paretzke HG, Schramel P, Ernst D (2005) Caesium-affected gene expression in Arabidopsis thaliana. New Phytol 165:747–754

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Henao JE, Schmidt W (2016) An inventory of nutrient-responsive genes in Arabidopsis root hairs. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00237

  • Salehi A, Tasdighi H, Gholamhoseini M (2016) Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac J Trop Biomed 6:886–891

    Article  Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu D-T, Martínez-Ballesta M del C, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008

    Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Zamarreño ÁM, García-Mina JM, Aroca R (2016) Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26:111–122

    Article  PubMed  CAS  Google Scholar 

  • Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–657

    Article  CAS  PubMed  Google Scholar 

  • Santos EF, Kondo Santini JM, Paixão AP, Júnior EF, Lavres J, Campos M, dos Reis AR (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem 113:6–19

    Article  CAS  PubMed  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E (2005) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Schrick K, Nguyen D, Karlowski WM, Mayer KFX (2004) START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol 5:1–16

    Article  Google Scholar 

  • Sebastian J, Yee M-C, Goudinho Viana W, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T, Jiang H, Baxter I et al (2016) Grasses suppress shoot-borne roots to conserve water during drought. Proc Natl Acad Sci USA

    Google Scholar 

  • Seifert GJ, Acet T, Xue H (2014) The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot 114:1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp RE, Wu Y, Voetberg GS, Aab IN, LeNoble ME (1994) Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J Exp Bot 45:1743–1751

    Article  CAS  Google Scholar 

  • Shelef O, Lazarovitch N, Rewald B, Golan-Goldhirsh A, Rachmilevitch S (2010) Root halotropism: salinity effects on Bassia indica root. Plant Biosyst 144:471–478

    Article  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, Sun J, Cao H, Huang Y, Bie Z (2018) Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci 19:95–98

    Article  CAS  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in arabidopsis. Plant Cell 22:3560–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Siemens JA, Zwiazek JJ (2003) Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Sci 165:113–120

    Article  CAS  Google Scholar 

  • Siemens JA, Zwiazek JJ (2004) Changes in root water flow properties of solution culture-grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. Physiol Plant 121:44–49

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Gupta A, Laxmi A (2017) Striking the right chord: signaling enigma during root gravitropism. Front Plant Sci 8:1–17

    PubMed  PubMed Central  Google Scholar 

  • Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Spollen WG, Lenoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steudle E (2000a) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2000b) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E, Henzler T (1995) Water channels in plants: do basic concepts of water transport change? J Exp Bot 46:1067–1076

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Eric Schaller G (2015) Ethylene inhibits cell proliferation of the arabidopsis root meristem. Plant Physiol 169:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Luo X, Sun M, Chen C, Ding X, Wang X, Yang S, Yu Q, Jia B, Ji W et al (2014) A glycine soja 14-3-3 protein gsgf14o participates in stomatal and root hair development and drought tolerance in arabidopsis thaliana. Plant Cell Physiol 55:99–118

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Li M, Shao Y, Yu L, Ma F (2017) Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00426

  • Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Miyazawa Y, Fujii N (2009) Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69:489–502

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan T, Cai J, Zhan E, Yang Y, Zhao J, Guo Y, Zhou H (2016) Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Plant Mol Biol 92:391–400

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka-Takada N, Kobayashi A, Takahashi H, Kamiya T, Kinoshita T, Maeshima M (2019) Plasma membrane-associated Ca2+-binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana. Plant Cell Physiol 0:1–11

    Google Scholar 

  • Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Sun X, Song D, Chen W, Zhang A et al (2017) Phosphorous application improves drought tolerance of Phoebe zhennan. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01561

  • Thor K (2019) Calcium—nutrient and messenger. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00440

  • Thorup-Kristensen K, Kirkegaard J (2016) Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot 118:573–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong H-Y, Gu C-S, Yuan H-Y, Ma J-J, Huang S-Z (2014) Effects of salt on the growth, photosyntheticpigments and structure of two halophytes, Iris halophyla and I. lactea Var. chinensis. Fresenius Environ Bull 23:84–90

    CAS  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Kitomi Y, Ishikawa S, Yano M (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2008) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraeten I, Schotte S, Geelen D (2014) Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci 5:1–13

    Article  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WH, Köhler B, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175:467–477

    Article  CAS  Google Scholar 

  • Wang D, Chen F, Wei G, Jiang M, Dong M (2015) The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans. Carbohyd Polym 127:325–331

    Article  CAS  Google Scholar 

  • Wang M, Ding L, Gao L, Li Y, Shen Q, Guo S (2016) The interactions of aquaporins and mineral nutrients in higher plants. Int J Mol Sci 17

    Google Scholar 

  • Wang X, Gao F, Bing J, Sun W, Feng X, Ma X, Zhou Y, Zhang G (2019) Overexpression of the Jojoba aquaporin gene, ScPIP1, enhances drought and salt tolerance in transgenic Arabidopsis. Int J Mol Sci

    Google Scholar 

  • Wasternack C, Song S (2017) Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321

    CAS  PubMed  Google Scholar 

  • West G (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong GR, Mazumdar P, Lau SE, Harikrishna JA (2018) Ectopic expression of a Musa acuminata root hair defective 3 (MaRHD3) in Arabidopsis enhances drought tolerance. J Plant Physiol 231:219–233

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Riaz M, Yan L, Du C, Liu Y, Jiang C (2017) Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front Plant Sci 8:1–10

    Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Cai XT, Wang Y, Xing L, Chen Q, Bin Xiang C (2014) HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis. J Exp Bot 65:4285–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a ‘stay-green’ phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin HY, Li L et al (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:1–13

    Article  CAS  Google Scholar 

  • Yu LX, Ray JD, Otoole JC, Nguyen HT (1995) Use of wax-petrolatum layers for screening rice root penetration. Crop Sci 35:684–687

    Article  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu P, Li X, White PJ, Li C (2015) A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS ONE 10:1–17

    Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y et al (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene Tasnrk2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5. https://doi.org/10.1371/journal.pone.0016041

  • Zhang L, Yan J, Vatamaniuk OK, Du X (2016) CsNIP2;1 is a plasma membrane transporter from cucumis sativus that facilitates urea uptake when expressed in saccharomyces cerevisiae and arabidopsis thaliana. Plant Cell Physiol 57:616–629

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F, Qiu D, Feng J, Wei Q, Chen L et al (2018) Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248:117–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Feng M, Chen W, Zhou X, Lu J, Wang Y, Li Y, Jiang CZ, Gan SS, Ma N et al (2019) In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. Nat Plants 5:290–299

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xing L, Xingang W, Hou Y-J, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:1–7

    Article  CAS  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali L, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhou J, Xiong Y, Liu C, Wang J, Wang G, Cai Y (2018) Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0198639

  • Zhu Z, Sun B, Xu X, Chen H, Zou L, Chen G, Cao B, Chen C, Lei J (2016) Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance. Front Plant Sci 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aroca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Romera, B., Aroca, R. (2020). Plant Roots—The Hidden Half for Investigating Salt and Drought Stress Responses and Tolerance. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_6

Download citation

Publish with us

Policies and ethics