Skip to main content

Special Anatomical Features of Halophytes: Implication for Salt Tolerance

  • Chapter
  • First Online:
  • 1070 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Soil salinity has become a key factor restricting agricultural production. Thus, plants, especially salt-tolerant crops, will have important economic significance. The adaptation or tolerance of plants to salinity stress involves a series of physiological, metabolic, and molecular mechanisms. Halophyte organisms acquire special salt-tolerant mechanisms to cope with a lock of salt and ensure normal growth and development under saline conditions during their long evolutionary adaptation, so understanding halophyte salinity pressure will provide us with methods and means to cultivate and develop salt-tolerant crop varieties. In physiological and molecular strategies adopted by halophytes are various including photosynthetic and transpiration rate of change, the sequestration of Na+ to cells or vacuole, the regulation of stomatal density and stomatal aperture, accumulation and hormone synthesis and gene expression related to the potential of these physical characteristics, like stress signal transduction, regulation of transcription factor transporter gene activation and expression of synthetase activation or inhibition, etc. This chapter reviews the research progress on physiological and molecular regulation mechanisms and special anatomical features of halophytes and reveals the tolerance and adaptability of halophytes to salt stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicent O (2017) Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 8:1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853

    Article  PubMed  Google Scholar 

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radical Biol Med 23:473–479

    Article  CAS  Google Scholar 

  • Al-Taisan W (2010) The relation between phenotypic plasticity of Senecio glaucus L. and some soil factors. Aust J Basic Appl Sci 4:1369–1375

    Google Scholar 

  • Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. In: Advances in botanical research. Elsevier, pp 75–112

    Google Scholar 

  • Anjum NA, Ahmad I, Válega M, Mohmood I, Gill SS, Tuteja N, Duarte AC, Pereir E (2014) Salt marsh halophyte services to metal–metalloid remediation: assessment of the processes and underlying mechanisms. Crit Rev Environ Sci Technol 44:2038–2106

    Article  CAS  Google Scholar 

  • Aronson JA, Whitehead EE (1989) HALOPH: a data base of salt tolerant plants of the world

    Google Scholar 

  • Ashraf M, Hameed M, Arshad M, Ashraf Y, Akhtar K (2008) Salt tolerance of some potential forage grasses from Cholistan desert of Pakistan. In: Ecophysiology of high salinity tolerant plants. Springer, pp 31–54

    Google Scholar 

  • Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta Biomembr 1465:140–151

    Google Scholar 

  • Chrispeels MJ, Sadava DE (2003) Plants, genes, and crop biotechnology. Jones & Bartlett Learning

    Google Scholar 

  • Chrispeels MJ, Crawford NM, Schroeder JI (1999) Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 11:661–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Dickison W (2000) Integrative plant anatomy. Harcourt Academic Press, San Diego, CA (Calif Google Scholar)

    Google Scholar 

  • Engels C, Marschner H (1995) Plant uptake and utilization of nitrogen. Nitrogen Fertil Environ 41–81

    Google Scholar 

  • Faraday CD, Thomson WW (1986) Functional aspects of the salt glands of the Plumbaginaceae. J Exp Bot 37:1129–1135

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Funct Plant Biol 22:875–884

    Article  Google Scholar 

  • Flowers T, Troke P, Yeo A (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Food FAO (2003) Agriculture organization. Gender and access to land, FAO land tenure studies, 4

    Google Scholar 

  • Gadallah M (2000) Effects of acid mist and ascorbic acid treatment on the growth, stability of leaf membranes, chlorophyll content and some mineral elements of Carthamus tinctorius, the safflower. Water Air Soil Pollut 118:311–327

    Article  CAS  Google Scholar 

  • Gale J (1975) Water balance and gas exchange of plants under saline conditions. In: Plants in saline environments. Springer, pp168–185

    Google Scholar 

  • Glenn E, Miyamoto S, Moore D, Brown JJ, Thompson TL, Brown P (1997) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730

    Article  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Grigore MN, Toma C (2006) Evidencing the successive cambia phenomenon on some halophylous representatives among Chenopodiaceae and its possible ecological-adaptive implications. Stud Com Complexul Muzeal Şt Nat Ion Borcea Bacău 21:87–93

    Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 4:204–218

    Google Scholar 

  • Grigore M, Toma C (2008) Ecological anatomy investigations related to some halophyte species from Moldavia. Rom J Biol Plant Biol 53:23–30

    Google Scholar 

  • Gupta N, Meena S, Gupta S, Khandelwal S (2002) Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance. Photosynthetica 40:535–539

    Article  CAS  Google Scholar 

  • Hamdy A (1996) Saline irrigation: assessment and management techniques. In: Chouckr-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker Publ

    Google Scholar 

  • Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322:229–238

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  PubMed  Google Scholar 

  • Hose E, Clarkson D, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Jennings BD (1976) The effects of sodium chloride on higher plants. Biol Rev 51:453–486

    Article  CAS  Google Scholar 

  • Kefu Z, Zi-Yi C, Shou-Jin F, Giang H, Hai F, Zeng L, Harris P (1995) Halophytes in China. Biology of salt tolerant plants. Department of Botany, University of Karachi, Pakistan, pp 284–293

    Google Scholar 

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric Ecosyst Environ 129:542–546

    Article  Google Scholar 

  • Kiliç S (2007) Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. http://dergipark.gov.tr/sdufeffd 2

  • Kirst G (1990) Salinity tolerance of eukaryotic marine algae. Ann Rev Plant Biol 41:21–53

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of the Gramineae. New Phytol 73:507–513

    Article  Google Scholar 

  • Liu R, Wang L, Tanveer M, Song J (2018) Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci 9

    Google Scholar 

  • Majeed A, Nisar MF, Hussain K (2010) Effect of saline culture on the concentration of Na+, K+ and Cl-in Agrostis tolonifera. Curr Res J Biol Sci 2:76–82

    CAS  Google Scholar 

  • Mansoor U, Hameed M, Wahid A, Rao AR (2002) Ecotypic variability for drought resistance in Cenchrus ciliaris L. germplasm from Cholistan Desert in Pakistan. Inter J Agric Biol 4:392–397

    Google Scholar 

  • Marcum KB, Murdoch CL (1994) Salinity tolerance mechanisms of six C4 turfgrasses. J Amer Soc Horti Sci 119:779–784

    Article  CAS  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke M (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot—root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 1255–1263

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naz N, Hameed M, Wahid A, Arshad M, Aqeel Ahmad MS (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Planta 135:185–195

    Article  CAS  Google Scholar 

  • Niknam S, McComb J (2000) Salt tolerance screening of selected Australian woody species—a review. For Eco Manag 139:1–19

    Article  Google Scholar 

  • Osmond C, Lüttge U, West K, Pallaghy C, Shacher-Hill B (1969) Ion absorption in Atriplex leaf tissue II. Secretion of ions to epidermal bladders. Aust J Biol Sci 22:797–814

    Article  CAS  Google Scholar 

  • Popp M, Polania J, Weiper M (1993) Physiological adaptations to different salinity levels in mangrove. In: Towards the rational use of high salinity tolerant plants. Springer, pp 217–224

    Google Scholar 

  • Rozema J, Riphagen I, Sminia T (1977) A light and electron-microscopical study on the structure and function of the salt gland of Glaux Maritima L. New Phytol 79:665–671

    Article  CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Sabovljevic M, Sabovljevic A (2007) Contribution to the coastal bryophytes of the Northern Mediterranean: are there halophytes among bryophytes. Phytol Balcan 13:131–135

    Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Chapter  Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    Article  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    Article  CAS  PubMed  Google Scholar 

  • Tejera N, Ortega E, Rodes R, Lluch C (2006) Nitrogen compounds in the apoplastic sap of sugarcane stem: Some implications in the association with endophytes. J Plant Physiol 163:80–85

    Article  CAS  PubMed  Google Scholar 

  • Thomson W, Platt-Aloia K (1979) Ultrastructural transitions associated with the development of the bladder cells of the trichomes of Atriplex. Cytobios 25:105–114

    CAS  PubMed  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungar IA (1991) Ecophysiology of vascular halophytes. CRC Press

    Google Scholar 

  • Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153

    Article  Google Scholar 

  • Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan flora. Inter J Agric Biol 5:207–212

    Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Weber D (2009) Adaptive mechanisms of halophytes in desert regions. In: Salinity and water stress. Springer, pp 179–185

    Google Scholar 

  • Youssef AM (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5:191–206

    CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazardous Mater 183:609–615

    Article  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA, Bohnert HJ (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwana Nawaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawaz, R., Ali, Z., Andleeb, T., Qureshi, U.M. (2020). Special Anatomical Features of Halophytes: Implication for Salt Tolerance. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_5

Download citation

Publish with us

Policies and ethics