Skip to main content

Special Adaptive Features of Plant Species in Response to Drought

  • Chapter
  • First Online:
Book cover Salt and Drought Stress Tolerance in Plants

Abstract

Under drought stress conditions, plants need to adapt themselves by manipulating key morphological, physiological, biochemical, and molecular processes. By doing so plants enhance their water uptake and storage, limit water loss and prevent tissues from wilting. There are many mechanisms and every crop has its own way of adaptive mechanisms to overcome drought stress. Drought stress adversely affects many physiological aspects of the plants, especially photosynthetic rate and other gaseous exchange traits. Prolonged drought stress severely diminishes crop growth and productivity. The physiological and molecular mechanisms related to drought stress tolerance and adaptation are widely studied. Different adaptive mechanisms maintaining appropriate metabolomic and biochemical homeostasis to prevent excessive damage caused by drought stress are also discussed. The mechanisms that regulate plants for adaptation to drought stress through special adaptive features are the main subject of the current chapter. It was concluded that combinations of these different features enhance the plant’s adaptation to drought condition. To understand how these mechanisms are regulated and how to overcome the adverse effect of drought on plant productivity, will give information to enhance adaptation of plants, which will ultimately improve quality and yield of the crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CK:

Cytokinin

GA:

Gibberellic acid

ABA:

Abscisic acid

RWC:

Relative water content

VPD:

Vapor pressure deficit

CO2:

Carbon dioxide

ROS:

Reactive oxygen species

RuBP:

Ribulose 1,5-bisphosphate

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

HYR:

Higher Yield Rice

WUE:

Water use efficiency

OA:

Osmotic adjustment

BADH:

Betaine aldehyde dehydrogenase

P5CR:

Pyrroline-5-carboxylate reductase

OAT:

Ornithine ornithine δ-aminotransferase

GC/MS:

Gas Chromatography Mass Spectrometry

SOD:

Superoxide dismutase

CAT:

Catalase

GSH:

Glutathione

TCA:

Tricarboxylic acid cycle

OPP:

Oxidative pentose phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate

GABA:

Gamma-aminobutyric Acid

G1P:

Glucose-1-phosphate

LEAs:

Late embryogenesis

HSPs:

Heat shock proteins

IPT:

Isopentenyl transferase

IAA:

Indole-3-acetic acid

QTL:

Quantitative Trait Loci

DRO1:

DEEPER ROOTING 1

mRNA:

Messenger RNA

JA:

Jasmonic acid

SA:

Salicylic acid

DREB:

Dehydration responsive transcription factors

CDSP:

Chloroplastic drought-induced stress protein

DRE/CRT:

Hydration responsive element/C-repeat

CBF:

C-repeat binding factor

ODC:

Ornithine decarboxylase

ADC:

Arginine decarboxylase

SAMDC:

S-adenosylmethionine decarboxylase

SPDS:

Spermidine synthase

SPMS:

Spermine synthase

ASR:

Abscisic acid, stress and ripening

REF:

Rubber elongation factor

SRPP:

Small rubber particle protein

References

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125

    Article  CAS  PubMed  Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  CAS  PubMed  Google Scholar 

  • Akinci S (1997) Physiological responses to water stress by Cucumis sativus L. and related species. University of Sheffield

    Google Scholar 

  • Almeida AAF, de Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19(4):425–448

    Article  Google Scholar 

  • Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A (2014) Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 5:5302

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Nazir U (2017a) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Zohaib A Wang L (2017b) Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system, and oxidative damage. Front Plant Sci 8:69

    Google Scholar 

  • Arena C, Vitale L, De Santo AV (2008) Paraheliotropism in Robinia pseudoacacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol 10(2):194–201

    Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot 87(6):789–794

    Google Scholar 

  • Aronne G, De Micco V (2004) Hypocotyl features of Myrtus communis (Myrtaceae): a many-sided strategy for possible enhancement of seedling establishment in the Mediterranean environment. Bot J Linnean Soc 145(2):195–202

    Article  Google Scholar 

  • Aronne G, Wilcock C (1997) Reproductive phenology in Mediterranean macchia vegetation. Lagascalia 19(1–2):445–454

    Google Scholar 

  • Ashraf M, Mr Foolad (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Baas P (1986) Ecological patterns in xylem anatomy. In: On the economy of plant form and function: proceedings of the Sixth Maria Moors Cabot symposium, evolutionary constraints on primary productivity, adaptive patterns of energy capture in plants, Harvard Forest, August 1983. Cambridge University Press, Cambridge [Cambridgeshire]

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. Iawa Bull 4:141–159

    Article  Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: The evolution plant physiology. Elsevier, pp 273–295

    Google Scholar 

  • Bae H, Kim SH, Kim M, Sicher RC, Lary D, Strem MD, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem 46(2):174–188

    Article  CAS  PubMed  Google Scholar 

  • Bargel H, Barthlott W, Koch K, Schreiber L, Neinhuis C (2004) Plant cuticles: multifunctional interfaces between plant and environment. In: The evolution plant physiology. Elsevier, p 171-III

    Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188(4):1099–1112

    Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159–1168

    Article  Google Scholar 

  • Blum A (2011) Genetic resources for drought resistance. In: Plant breeding for water-limited environments. Springer, pp 217–234

    Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5(2):418–429

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23(12):1381–1388

    Article  Google Scholar 

  • Broin M, Cuiné S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467(2–3):245–248

    Article  CAS  PubMed  Google Scholar 

  • Carlquist SJ (1975) Ecological strategies of xylem evolution. Univ California Press

    Google Scholar 

  • Carlquist S (1989) Adaptive wood anatomy of chaparral shrubs. The California Chaparral: paradigms re-examined. Los Angeles Country Museum of Natural History Contributions, Los Angeles, pp 25–35

    Google Scholar 

  • Carr MKV (2011) The water relations and irrigation requirements of coconut (Cocos nucifera): a review. Exp Agric 47(1):27–51

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Zhang Q, Li XS, Cao KF (2009) Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta 230(3):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586(12):1742–1747

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619

    Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira F (2007) Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotech Biochem 71(9):2190–2197

    Google Scholar 

  • Christman MA, Sperry JS (2010) Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ 33(3):431–443

    Article  PubMed  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100(2):291–296

    Article  CAS  Google Scholar 

  • Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Croker JL, Witte WT, Augé RM (1998) Stomatal sensitivity of six temperate, deciduous tree species to non-hydraulic root-to-shoot signalling of partial soil drying. J Exp Bot 49(321):761–774

    Article  CAS  Google Scholar 

  • DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16(1):1–6

    Article  Google Scholar 

  • DaMatta FM, Rena AB (2001) Tolerância do café à seca. Tecnologias de Produção de Café Com Qualidade 65–100

    Google Scholar 

  • DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164(1):111–117

    Article  CAS  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104(2):309

    Google Scholar 

  • De Micco V, Aronne G (2008) Twig morphology and anatomy of Mediterranean trees and shrubs related to drought tolerance. Bot Helv 118(2):139–148

    Article  Google Scholar 

  • De Micco V, Aronne G (2009) Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus. Trees 23(5):981–989

    Google Scholar 

  • De Micco V, Aronne G (2010) Root structure of Rumex scutatus growing on slopes. IAWA J 31(1):13–28

    Article  Google Scholar 

  • De Micco V, Aronne G (2012) Anatomy and lignin characterisation of twigs in the chaparral shrub Rhamnus californica. IAWA J 33(2):151–162

    Article  Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22(5):643–655

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Balzano A, Cherubini P, Aronne G (2016) Are wood fibres as sensitive to environmental conditions as vessels in tree rings with intra-annual density fluctuations (IADFs) in Mediterranean species? Trees 30(3):971–983

    Article  CAS  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Biswal AK, Min A, Henry A, Oane RH, Raorane ML Vardarajan AR (2015) Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep 5:15183

    Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Univ of California Press

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15(6–7):763–782

    Article  Google Scholar 

  • Fahn A (1964) Some anatomical adaptations of desert plants. Phytomorphology 4:93–101

    Google Scholar 

  • Feild TS, Zwieniecki MA, Donoghue MJ, Holbrook NM (1998) Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proc Natl Acad Sci 95(24):14256–14259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenner M (1999) Seed and seedling ecology. In: Handbook of functional plant ecology, pp 589–648

    Google Scholar 

  • Flowers TJ (1989) Plants under stress: biochemistry, physiology and ecology and their application to plant improvement, vol 39. Cambridge University Press

    Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goicoechea N, Dolezal K, Antoĺin MC, Strnad M, S´ nchez-Dĺaz M (1995) Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J Exp Bot 46(10):1543–1549

    Google Scholar 

  • Gomes FP, Prado CHBA (2007) Ecophysiology of coconut palm under water stress. Braz J Plant Physio 19(4):377–391

    Article  CAS  Google Scholar 

  • Gomes ARS, Kozlowski TT, Reich PB (1987) Some physiological responses of Theobroma cacao var. catongo seedlings to air humidity. New Phytol 107(3):591–602

    Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, de Almeida AAF, Leite HG, Aquino LA (2008) Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L.‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62(3):195–204

    Google Scholar 

  • Gong DS, Xiong YC, Ma BL, Wang TM, Ge JP, Qin XL, Li FM (2010) Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes. Environ Exp Bot 69(1):1–8

    Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physio 155(1):56–63

    Article  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388(1):151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YS, Serraj R, Liu SH, Xu JL, Ali J, Wang WS, Li ZK (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61(15):4145–4156

    Google Scholar 

  • Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Durcik M, Vogler JB, Nullet MA (2010) Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3(3):306–314

    Article  Google Scholar 

  • Guardiola‐Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Vogler JB, Nullet MA (2008) Local hydrologic effects of introducing non‐native vegetation in a tropical catchment. Ecohydrol: Ecosyst Land Water Process Interact Ecohydrogeomorphol 1(1):13–22

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Persp Plant Eco Evol Syst 4(2):97–115

    Article  Google Scholar 

  • He X, Chen Z, Wang J, Li W, Zhao J, Wu J, Chen X (2015) A sucrose: Fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene 570(2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Henry A, Cal AJ, Batoto TC, Torres RO, Serraj R (2012) Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot 63(13):4751–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog KM, Thum R, Kronfus G, Heldstab HJ, Häsler R (1998) Patterns and mechanisms of transpiration in a large subalpine Norway spruce (Picea abies (L.) Karst.). Eco Res 13(2):105–116

    Google Scholar 

  • Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin C, Mccarthy J (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot 97(5):755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52(365):2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hunt Jr ER, Zakir NJD, Nobel PS (1987) Water costs and water revenues for established and rain-induced roots of Agave deserti. Funct Ecol 125–129

    Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166

    Article  Google Scholar 

  • Ishikawa T, Takahara K, Hirabayashi T, Matsumura H, Fujisawa S, Terauchi R, Kawai-Yamada M (2009) Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1. Plant Cell Physiol 51(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53(367):175–181

    Article  CAS  PubMed  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96(2):409–419

    Article  PubMed  Google Scholar 

  • Jenks MA (2002) Critical issues with the plant cuticle’s function in drought tolerance. Biochem Mol Resp Plants Environ 97:127

    Google Scholar 

  • Jeyaramraja PR, Kumar RR, Pius PK, Thomas J (2003) Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones. Photosynthetica 41(4):579–582

    Article  CAS  Google Scholar 

  • Jones MM (1981) Mechanisms of drought resistance. In: The physiology and biochemistry of drought resistance in plants

    Google Scholar 

  • Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76(2–3):153–163

    Article  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6(11):1741–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104(39):15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavar T, Maras M, Kidrič M, Šuštar-Vozlič J, Meglič V (2008) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21(2):159–172

    Article  CAS  Google Scholar 

  • Kholodova VP, Meshcheryakov AB, Rakitin VY, Karyagin VV, Kuznetsov VV (2006) Hydraulic signal as a “primary messenger of water deficit” under salt stress in plants. In: Doklady biological sciences, vol 407. Springer, pp 155–157

    Google Scholar 

  • Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53(4):479–492

    Article  CAS  PubMed  Google Scholar 

  • Kohonen MM, Helland Å (2009) On the function of wall sculpturing in xylem conduits. J Bionic Eng 6(4):324–329

    Article  Google Scholar 

  • Koster J, Baas P (1982) Alveolar cuticular material in Myristicaceae. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. London

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68(2):270–334

    Article  Google Scholar 

  • Kramer PJ (1980) Drought, stress, and the origin of adaptations. In: Drought, stress, and the origin of adaptations, pp 7–20

    Google Scholar 

  • Kubiske ME, Abrams MD, Mostoller SA (1996) Stomatal and nonstomatal limitations of photosynthesis in relation to the drought and shade tolerance of tree species in open and understory environments. Trees 11(2):76–82

    Article  Google Scholar 

  • Kumar SN, Rajagopal V, Karun A (2007) Leaflet anatomical adaptations in coconut cultivars for drought tolerance

    Google Scholar 

  • Kummerow J (1981) Structure of roots and root systems. Ecosystems of the World

    Google Scholar 

  • Lakmini WGD, Nainanayake N, De Costa W (2006) Physiological responses for moisture stress and development of an index for screening coconut (Cocos nucifera L.) genotypes for drought. Trop Agric Res Ext 9:17–26

    Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water‐stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89(7):871–885

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Google Scholar 

  • Legros S, Mialet-Serra I, Caliman JP, Siregar FA, Cle´ment-Vidal A Dingkuhn M (2009) Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability. Ann Bot 104:1171–1182

    Google Scholar 

  • Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Fernie AR (2009) The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant 2(3):390–406

    Article  CAS  PubMed  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190(3):709–723

    Article  PubMed  Google Scholar 

  • Levitt J (1980a) Response of plants to environmental stresses: chilling, freezing, and high temperature stresses. Physiol Ecol: Ser Monogr Texts Treatises 1:23–64

    Google Scholar 

  • Levitt J (1980b) Responses of plants to environmental stresses (physiological ecology): chilling, freezing, and high temperature stresses. Academic Press. ISBN 124455018

    Google Scholar 

  • Lewis MC (1972) The physiological significance of variation in leaf structure. Sci Prog (1933–):25–51

    Google Scholar 

  • Liu R, Wang L, Tanveer M, Song J (2018) Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci 9

    Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106(1):193–199

    Article  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling–specificity is required. Trends Plant Sci 15(7):370–374

    Article  PubMed  CAS  Google Scholar 

  • Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. In: Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, pp 7–14

    Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35(1):299–319

    Article  Google Scholar 

  • Mostajeran A, Rahimi-Eichi V (2008) Drought stress effects on root anatomical characteristics of rice cultivars (Oryza sativa L.). Pak J Biol Sci 11(18):2173–2183

    Google Scholar 

  • Nagarajah S, Ratnasuriya GB (1981) Clonal variability in root growth and drought resistance in tea (Camellia sinensis). Plant Soil 60(1):153–155

    Google Scholar 

  • Nainanayake AD, Morison JIL (2007) A case study on physiology-based drought screening of coconut with selected accessions

    Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82(2):453–469

    Article  Google Scholar 

  • North GB, Nobel PS (1992) Drought‐induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus‐indica. New Phytol 120(1):9–19

    Google Scholar 

  • North GB, Nobel PS (1995) Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. under wet and drying conditions. New Phytol 130(1):47–57

    Google Scholar 

  • North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies. Ann Bot 77(2):133–142

    Google Scholar 

  • Nunes MA (1976) Water relations in coffee. Significance of plant water deficit to growth and yield; a review. J Coffee Res (India) 6(1):4–21

    Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28(7):916–927

    Article  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21(3):489–495

    Article  Google Scholar 

  • Padilla FM, de Dios Miranda J, Pugnaire FI (2007) Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296(1–2):103–113

    Article  CAS  Google Scholar 

  • Passos EEM, da Silva JV (1991) Détermination de l’état hydrique du cocotier par la méthode dendrométrique. Oleagineux 46:233–238

    Google Scholar 

  • Passos EE MP, Passos EEM, Prado C (2006) Comportamento sazonal do potencial hídrico e das trocas gasosoas de quatro variedades de coqueiro anão. SciELO, Brasil

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Peña-Valdivia CB, Sánchez-Urdaneta AB, Meza Rangel J, Juárez Muñoz J, García-Nava R, Celis Velázquez R (2010) Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L). Biol Res 43(4):417–427

    Article  PubMed  Google Scholar 

  • Pereira JS, Chaves MM (1995) Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Global change and Mediterranean-type ecosystems. Springer, pp 140–160

    Google Scholar 

  • Pinheiro C, Chaves MM (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167(6):1307–1314

    Article  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96(1):101–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Pospíšilová J, Synková H, Rulcová J (2000) Cytokinins and water stress. Biol Plant 43(3):321–328

    Article  Google Scholar 

  • Prakash-MBM ASDPG, Jacob SJ (1999) Drought alters the canopy architecture. Trées 13:161–167

    Google Scholar 

  • Priyadarshan PM, Clément-Demange A (2004) 3 breeding hevea rubber: formal and molecular genetics. Adv Genet 52:51–116

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal V, Ramadasan A (1999) Advances in plant physiology and biochemistry of coconut palm. APCC, Jakarta

    Google Scholar 

  • Rajagopal V, Kasturibai KV, Voleti SR (1990) Screening of coconut genotypes for drought tolerance. Oleagineux 45(5):215–223

    Google Scholar 

  • Reader RJ, Jalili A, Grime JP, Spencer RE, Matthews N (1993) A comparative study of plasticity in seedling rooting depth in drying soil. J Ecol 543–550

    Google Scholar 

  • Ren H, Yang L, Liu N (2008) Nurse plant theory and its application in ecological restoration in lower subtropics of China. Prog Nat Sci 18(2):137–142

    Article  Google Scholar 

  • Repellin A, Daniel C, Zuily Fodil Y (1994) Merits of physiological tests for characterizing the performance of different coconut varieties subjected to drought. Oleagineux (France)

    Google Scholar 

  • Repellin A, Braconnier S, Laffray D, Daniel C, Zuily-Fodil Y (1997) Water relations and gas exchange in young coconut palm (Cocos nucifera L.) as influenced by water deficit. Can J Bot 75(1):18–27

    Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11(2):171–179

    Article  PubMed  Google Scholar 

  • Riedel M, Riederer M, Becker D, Herran A, Kullaya A, Arana-López G, Rohde W (2009) Cuticular wax composition in Cocos nucifera L.: physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5(1):53

    Google Scholar 

  • Riederer M, Schreiber L (2001) Effects of environmental factors on the water permeability of plant cuticles. J Exp Bot 52:2023–2033

    Article  CAS  PubMed  Google Scholar 

  • Robards AW, Clarkson DT, Sanderson J (1979) Structure and permeability of the epidermal/hypodermal layers of the sand sedge (Carex arenaria, L.). Protoplasma 101(4):331–347

    Google Scholar 

  • Rossi M, Lijavetzky D, Hopp HE, Iusem N, Bernacchi D (1996) Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato. Mol Gen Genet 252(4):489–492

    CAS  PubMed  Google Scholar 

  • Ryan KG, Markham KR, Bloor SJ, Bradley JM, Mitchell KA, Jordan BR (1998) UVB radiation induced increase in quercetin: kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem Photobiol 68(3):323–330

    CAS  Google Scholar 

  • Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosys 134(3):247–259

    Article  Google Scholar 

  • Sánchez-Gómez D, Zavala MA, Valladares F (2006) Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta Oecolog 30(3):322–332

    Article  Google Scholar 

  • Sangsing K, Kasemsap P, Thanisawanyangkura S, Sangkhasila K, Gohet E, Thaler P, Cochard H (2004) Xylem embolism and stomatal regulation in two rubber clones (Hevea brasiliensis Muell. Arg.). Trees 18(2):109–114

    Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52(363):1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Scarpeci TE, Valle EM (2008) Rearrangement of carbon metabolism in Arabidopsis thaliana subjected to oxidative stress condition: an emergency survival strategy. Plant Growth Reg 54(2):133–142

    Article  CAS  Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147(4):345–354

    Article  PubMed  Google Scholar 

  • Schupp EW (1995) Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82(3):399–409

    Article  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotech 14(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Reddy AR (2011) Water deficit as a regulatory switch for legume root responses. Plant Signal Behav 6(6):914–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Park CM (2009) Auxin homeostasis during lateral root development under drought condition. Plant Signal Behav 4(10):1002–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Article  PubMed  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902. https://doi.org/10.3389/fpls.2015.00902

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Kumar S (2005) Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J Biosci 30(2):231–235

    Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55(407):2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16(8):399–447

    Article  Google Scholar 

  • Sicher RC, Barnaby JY (2012) Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiol Plant 144(3):238–253

    Article  CAS  PubMed  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7(6):e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Kumar S, Ahuja PS (2009) Differential expression of Histone H3 gene in tea (Camellia sinensis (L.) O. Kuntze) suggests its role in growing tissue. Mol Biol Rep 36(3):537–542

    Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104(1):13–23

    Article  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(S3):S115–S127

    Article  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88(3):581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93(10):1490–1500

    Article  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30(5):580–589

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132(2):805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi Y, Kubo H, Kasahara H, Sakaki T (1996) Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B. J Plant Physiol 147(5):589–592

    Article  CAS  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2018) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    Article  PubMed  CAS  Google Scholar 

  • Tausend PC, Goldstein G, Meinzer FC (2000) Water utilization, plant hydraulic properties and xylem vulnerability in three contrasting coffee (Coffea arabica) cultivars. Tree Physiol 20(3):159–168

    Article  PubMed  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401(6756):914

    Article  CAS  Google Scholar 

  • Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Diez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35(5):839–856

    Article  CAS  PubMed  Google Scholar 

  • Traveset A, Riera N, Mas RE (2001) Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. J Ecol 89(5):749–760

    Article  Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees 20(3):334

    Google Scholar 

  • Turner NC (1996) Further progress in crop water relations. In: Advances in agronomy, vol 58). Elsevier, pp 293–338

    Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25(2):173–194

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kanno N (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097

    Article  CAS  PubMed  Google Scholar 

  • Vinod KK (2012) Stress in plantation crops: adaptation and management. In: Crop stress and its management: perspectives and strategies. Springer, pp 45–137

    Google Scholar 

  • Vinod KK, Meenattoor JR, Pothen J, Krishnakumar AK, Sethurai MR (1996) Performace analysis for wintering pattern in Hevea brasiliensis clones. Indian J Nat Rub R 1:44–47

    Google Scholar 

  • Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Aranda I, Cano FJ (2012) Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8(2):186–200

    Article  CAS  Google Scholar 

  • Watkins K (2006) Human development report 2006-beyond scarcity: power, poverty and the global water crisis

    Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 109

    Google Scholar 

  • Wheeler EA, Baas P (1991) A survey of the fossil record for Dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA J 12(3):275–318

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28(6):800–812

    Article  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Williams LJ, Bunyavejchewin S, Baker PJ (2008) Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues. Oecologia 155(3):571–582

    Article  PubMed  Google Scholar 

  • Wilson BF (1995) Shrub stems: form and function. In: Plant stems. Elsevier, pp 91–102

    Google Scholar 

  • Xie Z, Jiang D, Cao W, Dai T, Jing Q (2003) Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Reg 41(2):117–127

    Article  CAS  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Ann Rev Plant Biol 61:421–442

    Article  CAS  Google Scholar 

  • Xiong L, Zhu J (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142(3):1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59(12):3317–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuemei J, Dong B, Shiran B, Talbot MJ, Edlington JE, Trijntje H, Dolferus R (2011) Control of ABA catabolism and ABA homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 111

    Google Scholar 

  • Yang JC, Zhang JH, Ye YX, Wang ZQ, Zhu QS, Liu LJ (2004) Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ 27(8):1055–1064

    Article  CAS  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38(2):171–186

    Article  CAS  Google Scholar 

  • Yu L, Wu S, Peng Y, Liu R, Chen X, Zhao P, Pei Y (2016) Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechol J 14(1):72–84

    Article  CAS  Google Scholar 

  • Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Duan H (2019) Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci 20(6):1268. https://doi.org/10.3390/ijms20061268

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3. 13 activation. Plant Physiol 151(4):1889–1901

    Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33(5):740–749

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and ascent of sap. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Fahad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, A. et al. (2020). Special Adaptive Features of Plant Species in Response to Drought. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_4

Download citation

Publish with us

Policies and ethics