Skip to main content

Quantum Machine Learning with Response Operators in Chemical Compound Space

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Abstract

The choice of how to represent a chemical compound has a considerable effect on the performance of quantum machine learning (QML) models based on kernel ridge regression (KRR). A carefully constructed representation can lower the prediction error for out-of-sample data by several orders of magnitude with the same training data. This is a particularly desirable effect in data scarce scenarios, such as they are common in first principles based chemical compound space explorations. Unfortunately, representations which result in KRR models with low and steep learning curves for extensive properties, for example, energies, do not necessarily lead to well performing models for response properties. In this chapter we review the recently introduced FCHL18 representation (Faber et al., J Chem Phys 148(24):241717, 2018), in combination with kernel-based QML models to account for response properties by including the corresponding operators in the regression (Christensen et al., J Chem Phys 150(6):064105, 2019). FCHL18 was designed to describe an atom in its chemical environment, allowing to measure distances between elements in the periodic table, and consequently providing a metric for both structural and chemical similarities between compounds. The representation does not decouple the radial and angular degrees of freedom, which makes it well-suited for comparing atomic environments. QML models using FCHL18 display low and steep learning curves for energies of molecules, clusters, and crystals. By contrast, the same QML models exhibit less favorable learning for other properties, such as forces, electronic eigenvalues, or dipole moments. We discuss the use of the electric field differential operator within a kernel-based operator QML (OQML) approach. Using OQML results in the same predictive accuracy for molecular dipole norm, but with approximately 20× less training data, as directly learning the dipole norm with a KRR model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717 (2018)

    Article  ADS  Google Scholar 

  2. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 3(12) (2017). https://doi.org/10.1126/sciadv.1701816

  3. J. Behler, J. Chem. Phys. 134, 074106 (2011)

    Article  ADS  Google Scholar 

  4. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys. 148(24), 241722 (2018)

    Article  ADS  Google Scholar 

  5. B. Huang, O.A. von Lilienfeld (2017). Preprint. arXiv:1707.04146

    Google Scholar 

  6. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13, 5255 (2017)

    Article  Google Scholar 

  7. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, J. Chem. Phys. 150(6), 064105 (2019)

    Article  ADS  Google Scholar 

  8. M.J. Willatt, F. Musil, M. Ceriotti (2018). Preprint. arXiv:1807.00408

    Google Scholar 

  9. F.A. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117, 135502 (2016). https://doi.org/10.1103/PhysRevLett.117.135502

    Article  ADS  Google Scholar 

  10. J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A. Marques, Chem. Mater. 29(12), 5090 (2017)

    Article  Google Scholar 

  11. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16) (2016). https://doi.org/10.1063/1.4964627

  12. O.A. von Lilienfeld, R. Ramakrishnan, M. Rupp, A. Knoll, Int. J. Quantum Chem. 115, 1084 (2015). https://arxiv.org/abs/1307.2918

    Article  Google Scholar 

  13. B.M. Axilrod, E. Teller, J. Chem. Phys 11(6), 299 (1943). https://doi.org/10.1063/1.1723844

    Article  ADS  Google Scholar 

  14. Y. Muto, J. Phys. Math. Soc. Jpn. 17, 629 (1943)

    Google Scholar 

  15. J. Gasteiger, M. Marsili, Tetrahedron 36(22), 3219 (1980). https://doi.org/10.1016/0040-4020(80)80168-2

    Article  Google Scholar 

  16. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  17. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv. 3(5), e1603015 (2017)

    Article  ADS  Google Scholar 

  18. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95(21), 214302 (2017)

    Article  ADS  Google Scholar 

  19. C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2 (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  20. R. Ramakrishnan, P. Dral, M. Rupp, O.A. von Lilienfeld, Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  21. L. Ruddigkeit, R. van Deursen, L. Blum, J.L. Reymond, J. Chem. Inf. Model. 52, 2684 (2012)

    Article  Google Scholar 

  22. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    Article  ADS  Google Scholar 

  23. K. Hansen, F. Biegler, O.A. von Lilienfeld, K.R. Müller, A. Tkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015)

    Article  Google Scholar 

  24. C.R. Collins, G.J. Gordon, O.A. von Lilienfeld, D.J. Yaron, J. Chem. Phys. 148(24), 241718 (2018)

    Article  ADS  Google Scholar 

  25. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Comm. 8, 13890 (2017). https://doi.org/10.1038/ncomms13890

    Article  ADS  Google Scholar 

  26. B. Huang, O.A. von Lilienfeld, Nature (2017). arXiv:1707.04146

    Google Scholar 

  27. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, in Proceedings of the 34th International Conference on Machine Learning, ICML 2017 (2017)

    Google Scholar 

  28. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, J. Chem. Phys. 148(24), 241727 (2018)

    Article  ADS  Google Scholar 

  29. W. Pronobis, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 14(6), 2991–3003 (2018)

    Article  Google Scholar 

  30. O.T. Unke, M. Meuwly, J. Chem. Phys. 148(24), 241708 (2018)

    Article  ADS  Google Scholar 

  31. B. Nebgen, N. Lubbers, J.S. Smith, A.E. Sifain, A. Lokhov, O. Isayev, A.E. Roitberg, K. Barros, S. Tretiak, J. Chem. Theory Comput. 9(16), 4495–4501 (2018)

    Google Scholar 

  32. H.E. Sauceda, S. Chmiela, I. Poltavsky, K.R. Müller, A. Tkatchenko, Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces. J. Chem. Phys. 150(11), 114102 (2019)

    Google Scholar 

  33. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, J. Chem. Phys. 148(24), 241732 (2018)

    Article  ADS  Google Scholar 

  34. O.A. von Lilienfeld, Angew. Chem. Int. Ed. 57, 4164 (2018). https://doi.org/10.1002/anie.201709686

    Article  Google Scholar 

  35. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, New J. Phys. 15(9), 095003 (2013)

    Article  ADS  Google Scholar 

  36. M. Tsubaki, T. Mizoguchi, J. Phys. Chem. Lett. 9(19), 5733 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anatole von Lilienfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faber, F.A., Christensen, A.S., Lilienfeld, O.A.v. (2020). Quantum Machine Learning with Response Operators in Chemical Compound Space. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_8

Download citation

Publish with us

Policies and ethics