Skip to main content

Learning Representations of Molecules and Materials with Atomistic Neural Networks

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Deep learning has been shown to learn efficient representations for structured data such as images, text, or audio. In this chapter, we present neural network architectures that are able to learn efficient representations of molecules and materials. In particular, the continuous-filter convolutional network SchNet accurately predicts chemical properties across compositional and configurational space on a variety of datasets. Beyond that, we analyze the obtained representations to find evidence that their spatial and chemical properties agree with chemical intuition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E. Gross, Phys. Rev. B 89(20), 205118 (2014)

    Article  ADS  Google Scholar 

  2. H. Huo, M. Rupp, (2017, preprint). arXiv:1704.06439

    Google Scholar 

  3. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717 (2018)

    Article  ADS  Google Scholar 

  4. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18(20), 13754 (2016)

    Article  Google Scholar 

  5. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. 113(30), 8368 (2016)

    Article  ADS  Google Scholar 

  6. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8(10), 6924 (2017)

    Article  Google Scholar 

  7. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017)

    Article  Google Scholar 

  8. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017)

    Article  Google Scholar 

  9. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8, 872 (2017)

    Article  ADS  Google Scholar 

  10. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 3(12), e1701816 (2017)

    Article  ADS  Google Scholar 

  11. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys. 148(24), 241722 (2018)

    ADS  Google Scholar 

  12. S. Chmiela, H.E. Sauceda, K.R. Müller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  13. A. Ziletti, D. Kumar, M. Scheffler, L.M. Ghiringhelli, Nat. Commun. 9(1), 2775 (2018)

    Article  ADS  Google Scholar 

  14. D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Phys. Rev. Mater. 2(1), 013808 (2018)

    Article  Google Scholar 

  15. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  ADS  Google Scholar 

  16. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett. 108(5), 058301 (2012)

    Article  ADS  Google Scholar 

  17. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, A.V. Lilienfeld, K.R. Müller, in Advances in Neural Information Processing Systems 25, ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates, Red Hook, 2012), pp. 440–448

    Google Scholar 

  18. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. Von Lilienfeld, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)

    Article  Google Scholar 

  19. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.R. Müller, A. Tkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015)

    Article  Google Scholar 

  20. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv. 3(5), e1603015 (2017)

    Article  ADS  Google Scholar 

  21. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  ADS  Google Scholar 

  22. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013)

    Article  ADS  Google Scholar 

  23. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys. 148(24), 241709 (2018)

    Article  ADS  Google Scholar 

  24. W. Pronobis, K.T. Schütt, A. Tkatchenko, K.R. Müller, Eur. Phys. J. B 91(8), 178 (2018)

    Article  ADS  Google Scholar 

  25. A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A.E. Roitberg, K. Barros, S. Tretiak, J. Phys. Chem. Lett. 9(16), 4495 (2018)

    Article  Google Scholar 

  26. K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 9(8), 2261–2269 (2018)

    Google Scholar 

  27. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, (2018, preprint). arXiv:1806.10349

    Google Scholar 

  28. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  29. K.T. Schütt, P.J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller, Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Red Hook, 2017), pp. 992–1002

    Google Scholar 

  30. A. Pukrittayakamee, M. Malshe, M. Hagan, L. Raff, R. Narulkar, S. Bukkapatnum, R. Komanduri, J. Chem. Phys. 130(13), 134101 (2009)

    Article  ADS  Google Scholar 

  31. M. Malshe, R. Narulkar, L.M. Raff, M. Hagan, S. Bukkapatnam, P.M. Agrawal, R. Komanduri, J. Chem. Phys. 130(18), 184102 (2009)

    Article  ADS  Google Scholar 

  32. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Neural Comput. 1(4), 541 (1989)

    Article  Google Scholar 

  33. X. Jia, B. De Brabandere, T. Tuytelaars, L.V. Gool, in Advances in Neural Information Processing Systems, ed. by D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett, vol. 29 (Curran Associates, Red Hook, 2016), pp. 667–675

    Google Scholar 

  34. C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia, Advances in Neural Information Processing Systems (Curran Associates, Red Hook, 2001), pp. 472–478

    Google Scholar 

  35. D.A. Clevert, T. Unterthiner, S. Hochreiter, (2015, preprint). arXiv:1511.07289

    Google Scholar 

  36. F. Chollet, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  37. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2818–2826

    Google Scholar 

  38. J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 (IEEE, Piscataway, 2009), pp. 248–255

    Book  Google Scholar 

  39. D. Broomhead, D. Lowe, Complex Syst. 2, 321 (1988)

    Google Scholar 

  40. J. Moody, C.J. Darken, Neural Comput. 1(2), 281 (1989)

    Article  Google Scholar 

  41. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  42. I. Loshchilov, F. Hutter, (2016, preprint). arXiv:1608.03983

    Google Scholar 

  43. D.P. Kingma, J. Ba, (2014, preprint). arXiv:1412.6980

    Google Scholar 

  44. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Gastegger for valuable discussions and feedback. This work was supported by the Federal Ministry of Education and Research (BMBF) for the Berlin Big Data Center BBDC (01IS14013A) and the Berlin Center for Machine Learning (01IS18037A). Additional support was provided by the Institute for Information & Communications Technology Promotion and funded by the Korean government (MSIT) (No. 2017-0-00451, No. 2017-0-01779). A.T. acknowledges support from the European Research Council (ERC-CoG grant BeStMo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Robert Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schütt, K.T., Tkatchenko, A., Müller, KR. (2020). Learning Representations of Molecules and Materials with Atomistic Neural Networks. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_11

Download citation

Publish with us

Policies and ethics