Skip to main content

Regulation of Hsf1 and the Heat Shock Response

  • Chapter
  • First Online:
Book cover HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

The heat shock response (HSR) is characterized by the induction of molecular chaperones following a sudden increase in temperature. In eukaryotes, the HSR comprises the set of genes controlled by the transcription factor Hsf1. The HSR is induced by defects in co-translational protein folding, ribosome biogenesis, organellar targeting of nascent proteins, and protein degradation by the ubiquitin proteasome system. Upon heat shock, these processes may be endogenous sources of polypeptide ligands that activate the HSR. Mechanistically, these ligands are thought to titrate the chaperone Hsp70 away from Hsf1, releasing Hsf1 to induce the full arsenal of cellular chaperones to restore protein homeostasis. In metazoans, this cell-autonomous feedback loop is modulated by the microenvironment and neuronal cues to enable tissue-level and organism-wide coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D (2019) A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. Elife 8:e45002

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alford BD, Brandman O (2018) Quantification of Hsp90 availability reveals differential coupling to the heat shock response. J Cell Biol 217:3809–3816

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ali A, Biswas A, Pal M (2018) HSF1 mediated TNF-α production during proteotoxic stress response pioneers proinflammatory signal in human cells. FASEB J 33:2621–2635

    PubMed  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    PubMed  CAS  Google Scholar 

  • Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ, Wolff SC, Yates JR, Manning G, Dillin A (2014) HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science 346:360–363

    PubMed  PubMed Central  CAS  Google Scholar 

  • Baler R, Welch W, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    PubMed  CAS  Google Scholar 

  • Björk J, Åkerfelt M, Joutsen J, Puustinen M, Cheng F, Sistonen L, Nees M (2016) Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35:1770

    PubMed  Google Scholar 

  • Boorstein W, Craig E (1990) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262–3267

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boos F, Krämer L, Groh C, Jung F, Haberkant P, Stein F, Wollweber F, Gackstatter A, Zöller E, van der Laan M et al (2019) Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol 21(4):442–451

    PubMed  CAS  Google Scholar 

  • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li G-W, Zhou S, King D, Shen PS, Weibezahn J et al (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–1150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Budzyński MA, Puustinen MC, Joutsen J, Sistonen L (2015) Uncoupling stress-inducible phosphorylation of heat shock factor 1 from its activation. Mol Cell Biol 35:2530–2540

    PubMed  PubMed Central  Google Scholar 

  • Bukau B, Walker G (1990) Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. EMBO J 9:4027–4036

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23:2452–2462

    PubMed  CAS  Google Scholar 

  • Chowdhary S, Kainth AS, Gross DS (2017) Heat shock protein genes undergo dynamic alteration in their three-dimensional structure and genome organization in response to thermal stress. Mol Cell Biol 37:e00292-17

    PubMed  PubMed Central  Google Scholar 

  • Chowdhary S, Kainth AS, Pincus D, Gross DS (2019) Heat shock factor 1 drives intergenic association of its target gene loci upon heat shock. Cell Rep 26:18–28.e5

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dai C (2018) The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc Lond B Biol Sci 373:20160525

    PubMed  Google Scholar 

  • Dai C, Sampson S (2016) HSF1: guardian of proteostasis in cancer. Trends Cell Biol 26:17–28

    PubMed  CAS  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, Bronson RT, Whitesell L, Lindquist S (2012) Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 122:3742–3754

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dai S, Tang Z, Cao J, Zhou W, Li H, Sampson S, Dai C (2015) Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 34:275–293

    PubMed  CAS  Google Scholar 

  • Didomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    PubMed  CAS  Google Scholar 

  • Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA, Wolff SC, Kennedy BK, Dillin A (2015) Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep 12:1196–1204

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte FM, Fuda NJ, Mahat DB, Core LJ, Guertin MJ, Lis JT (2016) Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation. Genes Dev 30:1731–1746

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192

    PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, Drummond AD (2011) Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc National Acad Sci 108:680–685

    CAS  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS et al (2017) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8:14405

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn J-S, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169–5176

    PubMed  CAS  Google Scholar 

  • Hentze N, Breton L, Wiesner J, Kempf G, Mayer MP (2016) Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Elife 5:e11576

    PubMed  PubMed Central  Google Scholar 

  • Hong Y, Rogers R, Matunis M, Mayhew C, Goodson M, Park-Sarge O, Sarge K, Goodson M (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276:40263–40267

    PubMed  CAS  Google Scholar 

  • Hsu A-L, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    PubMed  CAS  Google Scholar 

  • Jaeger AM, Charles PW, Sistonen L, Thiele DJ (2016) Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 23:147–154

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Kim S-H, Li GC (1999a) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254:264–268

    PubMed  CAS  Google Scholar 

  • Kim H, Kang H, Kim H (1999b) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 48:429–433

    PubMed  CAS  Google Scholar 

  • Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K et al (2015) FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol 17:322–332

    PubMed  PubMed Central  Google Scholar 

  • Krakowiak J, Zheng X, Patel N, Feder ZA, Anandhakumar J, Valerius K, Gross DS, Khalil AS, Pincus D (2018) Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. Elife 7:e31668

    PubMed  PubMed Central  Google Scholar 

  • Labbadia J, Morimoto RI (2014) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:1–30

    Google Scholar 

  • Labbadia J, Morimoto RI (2015) Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell 59:639–650

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Chauve L, Phelps G, Brielmann RM, Morimoto RI (2016) E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response. Genes Dev 30:2062–2075

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Labbadia J, Morimoto RI (2017) Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27:895–905

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    PubMed  CAS  Google Scholar 

  • Lindquist S (2009) Protein folding sculpting evolutionary change. Cold Spring Harb Symp Quant Biol 74:103–108

    PubMed  CAS  Google Scholar 

  • Littlefield O, Nelson H (1999) A new use for the “wing” of the “winged” helix-turn-helix motif in the HSF–DNA cocrystal. Nat Struct Mol Biol 6:464–470

    CAS  Google Scholar 

  • Ma X, Xu L, Alberobello A, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T, Mueller E (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional Axis. Cell Metab 22:695–708

    PubMed  CAS  Google Scholar 

  • Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT (2016) Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol Cell 62:63–78

    PubMed  PubMed Central  CAS  Google Scholar 

  • Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C (2019) Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. ELife 8. pii: e47791. PMID: 31552827

    Google Scholar 

  • McMillan RD, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    PubMed  CAS  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    PubMed  PubMed Central  CAS  Google Scholar 

  • Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF (2007) Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26:5086–5097

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    PubMed  PubMed Central  CAS  Google Scholar 

  • Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10:930

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson VK, Ali A, Dutta N, Ghosh S, Jana M, Ganguli A, Komarov A, Paul S, Dwivedi V, Chatterjee S et al (2014) Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1. Oncotarget 5

    Google Scholar 

  • Neudegger T, Verghese J, Hayer-Hartl M, Hartl UF, Bracher A (2016) Structure of human heat-shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol 23:140–146

    PubMed  CAS  Google Scholar 

  • Östling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086

    PubMed  Google Scholar 

  • Peffer S, Goncalves D, Morano KA (2019) Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. J Biol Chem 294(32):12191–12202. PMID: 31239354

    Google Scholar 

  • Pincus D, Anandhakumar J, Thiru P, Guertin MJ, Erkine AM, Gross DS (2018) Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome. Mol Biol Cell 29(26):3168–3182

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814

    PubMed  PubMed Central  CAS  Google Scholar 

  • Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl UF (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985

    PubMed  CAS  Google Scholar 

  • Riback J, Laskowski P, Scott JL, Wallace E, Rojek AE, Schwartz MH, Sosnick TR, Drummond AD (2015) Heat shock triggers assembly of tRNA synthetases into an active supercomplex. Biophys J 108:221a

    Google Scholar 

  • Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, Schnitt SJ, Whitesell L, Tamimi RM, Lindquist S et al (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc National Acad Sci 108:18378–18383

    CAS  Google Scholar 

  • Santagata S, Mendillo ML, Tang Y, Subramanian A, Perley CC, Roche SP, Wong B, Narayan R, Kwon H, Koeva M et al (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303

    PubMed  PubMed Central  Google Scholar 

  • Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L et al (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158:564–578

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecularchaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shmidt R, Schessner JP, Borner G, Schuck S (2019) The proteasome biogenesis regulator Rpn4 cooperates with the unfolded protein response to promote ER stress resistance. Elife 8:pii: e43244

    Google Scholar 

  • Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D, Denic V (2016) Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining eukaryotic proteostasis. Mol Cell 63:60–71

    PubMed  PubMed Central  Google Scholar 

  • Solomon J, Rossi J, Golic K, McGarry T, Lindquist S (1991) Changes in hsp70 alter thermotolerance and heat-shock regulation in Drosophila. New Biol 3:1106–1120

    PubMed  CAS  Google Scholar 

  • Sorger PK, Nelson H (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham H (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    PubMed  CAS  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    PubMed  CAS  Google Scholar 

  • Straus D, Walter W, Gross C (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4:2202–2209

    PubMed  CAS  Google Scholar 

  • Tang Z, Dai S, He Y, Doty RA, Shultz LD, Sampson S, Dai C (2015) MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160:729–744

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trotter EW, Kao C, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825

    PubMed  CAS  Google Scholar 

  • Tye BW, Commins N, Ryazanova LV, Wühr M, Springer M, Pincus D, Churchman SL (2019) Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. Elife 8:43002

    CAS  Google Scholar 

  • van Oosten-Hawle P, Porter RS, Morimoto RI (2013) Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153:1366–1378

    PubMed  PubMed Central  Google Scholar 

  • Wallace E, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM et al (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–1298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whitesell L, Lindquist S (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 13:469–478

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Ueda J, Yamamoto N, Hashikawa N, Sakurai H (2007) Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6:1373–1379

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Huang S, Gaertig MA, Li X-J, Li S (2014) Age-dependent decrease in chaperone activity impairs MANF expression, leading to purkinje cell degeneration in inducible SCA17 mice. Neuron 81:349–365

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D (2016) Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife 5:e18638

    PubMed  PubMed Central  Google Scholar 

  • Zheng X, Beyzavi A, Krakowiak J, Patel N, Khalil AS, Pincus D (2018) Hsf1 phosphorylation generates cell-to-cell variation in Hsp90 levels and promotes phenotypic plasticity. Cell Rep 22:3099–3106

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to A. Ali and G. Bushkin for critical reading of the manuscript. This work was supported by an Early Independence Award from the NIH (DP5 OD017941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pincus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pincus, D. (2020). Regulation of Hsf1 and the Heat Shock Response. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_3

Download citation

Publish with us

Policies and ethics