Skip to main content

Deep Radiomic Features from MRI Scans Predict Survival Outcome of Recurrent Glioblastoma

  • Conference paper
  • First Online:
Radiomics and Radiogenomics in Neuro-oncology (RNO-AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11991))

Abstract

This paper proposes to use deep radiomic features (DRFs) from a convolutional neural network (CNN) to model fine-grained texture signatures in the radiomic analysis of recurrent glioblastoma (rGBM). We use DRFs to predict survival of rGBM patients with preoperative T1-weighted post-contrast MR images (n = 100). DRFs are extracted from regions of interest labelled by a radiation oncologist and used to compare between short-term and long-term survival patient groups. Random forest (RF) classification is employed to predict survival outcome (i.e., short or long survival), as well as to identify highly group-informative descriptors. Classification using DRFs results in an area under the ROC curve (AUC) of 89.15% (p < 0.01) in predicting rGBM patient survival, compared to 78.07% (p < 0.01) when using standard radiomic features (SRF). These results indicate the potential of DRFs as a prognostic marker for patients with rGBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.github.com/hagaygarty/mdCNN.

References

  1. Stupp, R., et al.: Changing paradigms—an update on the multidisciplinary management of malignant glioma. Oncologist 11, 165–180 (2006). https://doi.org/10.1634/theoncologist.11-2-165

    Article  Google Scholar 

  2. Sizoo, E.M., et al.: Measuring health-related quality of life in high-grade glioma patients at the end of life using a proxy-reported retrospective questionnaire. J. Neurooncol. 116, 283–290 (2014). https://doi.org/10.1007/s11060-013-1289-x

    Article  Google Scholar 

  3. Sharma, M., et al.: Outcomes and prognostic stratification of patients with recurrent glioblastoma treated with salvage stereotactic radiosurgery. J. Neurosurg. 1, 1–11 (2018)

    Google Scholar 

  4. Chaddad, A., Daniel, P., Desrosiers, C., Toews, M., Abdulkarim, B.: Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time. IEEE J. Biomed. Health Inform. 23, 795–804 (2019)

    Article  Google Scholar 

  5. Rathore, S., et al.: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 8, 5087 (2018)

    Article  Google Scholar 

  6. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  7. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  8. Nie, D., et al.: Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9, 1103 (2019)

    Article  Google Scholar 

  9. Chaddad, A., Desrosiers, C., Niazi, T.: Deep radiomic analysis of MRI related to Alzheimer’s disease. IEEE Access 6, 58213–58221 (2018)

    Article  Google Scholar 

  10. Chaddad, A., Toews, M., Desrosiers, C., Niazi, T.: Deep radiomic analysis based on modeling information flow in convolutional neural networks. IEEE Access 7, 97242–97252 (2019)

    Article  Google Scholar 

  11. Chaddad, A., Sabri, S., Niazi, T., Abdulkarim, B.: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Med. Biol. Eng. Comput. 56, 2287–2300 (2018)

    Article  Google Scholar 

  12. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979)

    Article  Google Scholar 

  13. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19, 1264–1274 (1989)

    Article  Google Scholar 

  14. Thibault, G., et al.: Texture indexes and gray level size zone matrix application to cell nuclei classification (2009)

    Google Scholar 

  15. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Sumi, N.S., Islam, M.A., Hossain, M.A.: Evaluation and computation of diagnostic tests: a simple alternative. Bull. Malays. Math. Sci. Soc. 37, 411–423 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Deng, Y., Bao, F., Deng, X., Wang, R., Kong, Y., Dai, Q.: Deep and structured robust information theoretic learning for image analysis. IEEE Trans. Image Process. 25, 4209–4221 (2016)

    Article  MathSciNet  Google Scholar 

  18. Deng, Y., et al.: Information transduction capacity reduces the uncertainties in annotation-free isoform discovery and quantification. Nucleic Acids Res. 45, e143 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Chaddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaddad, A., Zhang, M., Desrosiers, C., Niazi, T. (2020). Deep Radiomic Features from MRI Scans Predict Survival Outcome of Recurrent Glioblastoma. In: Mohy-ud-Din, H., Rathore, S. (eds) Radiomics and Radiogenomics in Neuro-oncology. RNO-AI 2019. Lecture Notes in Computer Science(), vol 11991. Springer, Cham. https://doi.org/10.1007/978-3-030-40124-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40124-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40123-8

  • Online ISBN: 978-3-030-40124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics