Skip to main content

Net-Zero Energy Buildings: Modeling, Real-Time Operation, and Protection

  • Chapter
  • First Online:
Food-Energy-Water Nexus Resilience and Sustainable Development

Abstract

Recent advancements in the power electronics and communication technologies provide the technical infrastructures for the net-zero energy buildings (nZEB) with its home energy management system (HEMS). HEMS is vital for the effective performance of an nZEB to maximize the grid power independency. An nZEB with its HEMS works in an effective and economical way as long as these steps including modeling, operation, and protection are defined well and work in a proper way. Thereby, the modeling, real-time operation, and protection approaches need to be studied in-depth in order to have an effective nZEB. This chapter studies different modeling techniques such as mathematic models and data-driven approaches for nZEB components that include solar photovoltaic (PV) array, home load demand, energy storage systems (ESS), electric vehicle (EV), and heat pump (HP). The impact of uncertainties is analyzed for the performance of the different home component models. The benefits, challenges, impacts, and problems of employing these techniques are presented and some of them are proposed in detail. Online control techniques, such as online scheduling, model predictive control (MPC), and stochastic dynamic programming (SDP), are presented and an MPC is implemented to minimize home grid power dependency. Last but not least, the protection methods are executed to protect the correct performance of the house and increase the security of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGraw-Hill Construction, Energy Efficiency Trends in Residential and Commercial Buildings, Technical Report, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (2010)

    Google Scholar 

  2. M. Alirezaei, M. Noori, O. Tatari, Getting to net zero energy building: Investigating the role of vehicle to home technology. Energ. Build. 130, 465–476 (2016)

    Article  Google Scholar 

  3. Z.C. Hub, Carbon Compliance–Setting an Appropriate Limit for Zero Carbon New Homes (Zero Carbon Hub, 2011)

    Google Scholar 

  4. Z.C. Hub, Allowable Solutions for tomorrow’s New Homes (Zero Carbon Hub, 2011)

    Google Scholar 

  5. K. Peterson, P. Torcellini, R. Grant, A Common Definition for Zero Energy Buildings, Technical Report, the U.S. Department of Energy by The National Institute of Building Sciences (2015)

    Google Scholar 

  6. I. Sartori, J. Candanedo, S. Geier, R. Lollini, A. Athienitis, F. Garde, L. Pagliano, Comfort and energy performance recommendations for net zero energy buildings, in the Proceedings of EuroSun, 2010

    Google Scholar 

  7. L. Wang, C. Singh, Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans. Energy Convers. 24(1), 163–172 (2009)

    Article  Google Scholar 

  8. Z. Zeng, R. Zhao, H. Yang, Micro-sources design of an intelligent building integrated with micro-grid. Energ. Build. 57, 261–267 (2013)

    Article  Google Scholar 

  9. H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. Francois, Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Ind. Electron. 58(10), 4583–4592 (2011)

    Article  Google Scholar 

  10. X. Guan, Z. Xu, Q.S. Jia, Energy-efficient buildings facilitated by microgrid. IEEE Trans. Smart Grid 1(3), 243–252 (2010)

    Article  Google Scholar 

  11. C. Sun, F. Sun, S.J. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics & batteries. J. Power Sources 325, 723–731 (2016)

    Article  Google Scholar 

  12. S.J. Moura, Y.A. Chang, Lyapunov-based switched extremum seeking for photovoltaic power maximization. Control. Eng. Pract. 21(7), 971–980 (2013)

    Article  Google Scholar 

  13. M. Yousefi, N. Kianpoor, A. Hajizadeh, M.N. Soltani, ANFIS based approach for Stochastic modeling of smart home, in 2nd European Conference on Electrical Engineering & Computer Science (2018)

    Google Scholar 

  14. X. Wu, X. Hu, S. Moura, X. Yin, V. Pickert, Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J. Power Sources 333, 203–212 (2016)

    Article  Google Scholar 

  15. M. Yousefi, N. Kianpoor, A. Hajizadeh, M. Soltani, Stochastic smart charging of electric vehicles for residential homes with PV integration, in 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), (IEEE, 2019, April), pp. 377–382

    Google Scholar 

  16. X. Wu, X. Hu, X. Yin, S.J. Moura, Stochastic optimal energy management of smart home with PEV energy storage. IEEE Trans. Smart Grid 9(3), 2065–2075 (2016)

    Article  Google Scholar 

  17. Y.M. Wi, J.U. Lee, S.K. Joo, Electric vehicle charging method for smart homes/buildings with a photovoltaic system. IEEE Trans. Consum. Electron. 59(2), 323–328 (2013)

    Article  Google Scholar 

  18. F. Luo, G. Ranzi, X. Wang, Z.Y. Dong, Service recommendation in smart grid: Vision, technologies, and applications, in 2016 9th International Conference on Service Science (ICSS), (IEEE, 2016, October), pp. 31–38

    Google Scholar 

  19. F. Luo, G. Ranzi, C. Wan, Z. Xu, Z.Y. Dong, A multistage home energy management system with residential photovoltaic penetration. IEEE Trans. Ind. Inf. 15(1), 116–126 (2019)

    Article  Google Scholar 

  20. N. Kianpoor, M. Yousefi, N. Bayati, A. Hajizadeh, M.N. Soltani, Fractional order modelling of DC-DC boost converters, in 28th International Symposium on Industrial Electronics (ISIE), (IEEE Press, 2019)

    Google Scholar 

  21. N. Bayati, A. Hajizadeh, M. Soltani, Protection in DC microgrids: A comparative review. IET Smart Grid 1(3), 66–75 (2018)

    Article  Google Scholar 

  22. N. Bayati, A. Hajizadeh, M. Soltani, Accurate modeling of DC microgrid for fault and protection studies, in 2018 International Conference on Smart Energy Systems and Technologies (SEST), (IEEE, 2018, September), pp. 1–6

    Google Scholar 

  23. N. Bayati, A. Hajizadeh, M. Soltani, Impact of faults and protection methods on DC microgrids operation, in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), (IEEE, 2018, June), pp. 1–6

    Google Scholar 

  24. K. Hirose, T. Tanaka, T. Babasaki, S. Person, O. Foucault, B.J. Sonnenberg, M. Szpek, Grounding concept considerations and recommendations for 400VDC distribution system, in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), (IEEE, 2011, October), pp. 1–8

    Google Scholar 

  25. I. Lorzadeh, H.A. Abyaneh, M. Savaghebi, O. Lorzadeh, A. Bakhshai, J.M. Guerrero, An enhanced instantaneous circulating current control for reactive power and harmonic load sharing in islanded microgrids. J. Power Electron. 17(6), 1658–1671 (2017)

    Google Scholar 

  26. O. Lorzadeh, I. Lorzadeh, M.N. Soltani, A. Hajizadeh, A novel active stabilizer method for DC/DC power converter systems feeding constant power loads, in 28th International Symposium on Industrial Electronics (isie), (IEEE Press, 2019)

    Google Scholar 

  27. J. Salpakari, T. Rasku, J. Lindgren, P.D. Lund, Flexibility of electric vehicles and space heating in net zero energy houses: An optimal control model with thermal dynamics and battery degradation. Appl. Energy 190, 800–812 (2017)

    Article  Google Scholar 

  28. W. Kempton, J. Tomić, Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 144(1), 268–279 (2005)

    Article  Google Scholar 

  29. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15(3), 1625–1636 (2011)

    Article  Google Scholar 

  30. C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, Z. Hu, Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1(4), 38–46 (2015)

    Article  Google Scholar 

  31. A. Tascikaraoglu, A.R. Boynuegri, M. Uzunoglu, A demand side management strategy based on forecasting of residential renewable sources: A smart home system in Turkey. Energ. Build. 80, 309–320 (2014)

    Article  Google Scholar 

  32. V. Fthenakis, H.C. Kim, Land use and electricity generation: A life-cycle analysis. Renew. Sust. Energ. Rev. 13(6–7), 1465–1474 (2009)

    Article  Google Scholar 

  33. X. Yang, L. Chen, X. Wang, J. Cristoforo, A dual-spiral reengineering model for legacy system, in TENCON 2005–2005 IEEE Region 10 Conference, (IEEE, 2005, November), pp. 1–5

    Google Scholar 

  34. M. Berković-Šubić, M. Rauch, D. Dović, M. Andrassy, Primary energy consumption of the dwelling with solar hot water system and biomass boiler. Energy Convers. Manag. 87, 1151–1161 (2014)

    Article  Google Scholar 

  35. Y. Man, H. Yang, J.D. Spitler, Z. Fang, Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings. Appl. Energy 88(11), 4160–4171 (2011)

    Article  Google Scholar 

  36. S. Rosiek, F.J. Batlles, Shallow geothermal energy applied to a solar-assisted air-conditioning system in southern Spain: Two-year experience. Appl. Energy 100, 267–276 (2012)

    Article  Google Scholar 

  37. D. Neves, C.A. Silva, S. Connors, Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies. Renew. Sust. Energ. Rev. 31, 935–946 (2014)

    Article  Google Scholar 

  38. Z. Zhao, W.C. Lee, Y. Shin, K.B. Song, An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)

    Article  Google Scholar 

  39. P. Chavali, P. Yang, A. Nehorai, A distributed algorithm of appliance scheduling for home energy management system. IEEE Trans. Smart Grid 5(1), 282–290 (2014)

    Article  Google Scholar 

  40. M.I. Ghiasi, M.A. Golkar, A. Hajizadeh, Lyapunov based-distributed fuzzy-sliding mode control for building integrated-DC microgrid with plug-in electric vehicle. IEEE Access 5, 7746–7752 (2017)

    Article  Google Scholar 

  41. Y. Ma, T. Houghton, A. Cruden, D. Infield, Modeling the benefits of vehicle-to-grid technology to a power system. IEEE Trans. Power Syst. 27(2), 1012–1020 (2012)

    Article  Google Scholar 

  42. S.L. Andersson, A.K. Elofsson, M.D. Galus, L. Göransson, S. Karlsson, F. Johnsson, G. Andersson, Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany. Energy Policy 38(6), 2751–2762 (2010)

    Article  Google Scholar 

  43. M. Yousefi, A. Hajizadeh, M. Soltani, Energy management strategies for smart home regarding uncertainties: State of the art, trends, and challenges, in 2018 IEEE International Conference on Industrial Technology (ICIT), (IEEE, 2018, February), pp. 1219–1225

    Google Scholar 

  44. H.K. Alfares, M. Nazeeruddin, Electric load forecasting: Literature survey and classification of methods. Int. J. Syst. Sci. 33(1), 23–34 (2002)

    Article  MATH  Google Scholar 

  45. G. Darivianakis, A. Georghiou, R.S. Smith, J. Lygeros, A stochastic optimization approach to cooperative building energy management via an energy hub, in 2015 54th IEEE Conference on Decision and Control (CDC), (IEEE, 2015, December), pp. 7814–7819

    Google Scholar 

  46. M. Yousefi, A. Hajizadeh, M.N. Soltani, A comparison study on stochastic modeling methods for home energy management system. IEEE Trans. Ind. Inf. (2019)

    Google Scholar 

  47. M. van Gerven, S. Bohte (eds.), Artificial neural networks as models of neural information processing (Frontiers Media SA, 2018)

    Google Scholar 

  48. H.S. Hippert, C.E. Pedreira, R.C. Souza, Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)

    Article  Google Scholar 

  49. S. Bouktif, A. Fiaz, A. Ouni, M. Serhani, Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 11(7), 1636 (2018)

    Article  Google Scholar 

  50. C. Tian, J. Ma, C. Zhang, P. Zhan, A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(12), 3493 (2018)

    Article  Google Scholar 

  51. Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Article  Google Scholar 

  52. G.A. Darbellay, M. Slama, Forecasting the short-term demand for electricity: Do neural networks stand a better chance? Int. J. Forecast. 16(1), 71–83 (2000)

    Article  Google Scholar 

  53. H. Shi, M. Xu, R. Li, Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 9(5), 5271–5280 (2017)

    Article  Google Scholar 

  54. P.H. Kuo, C.J. Huang, A high precision artificial neural networks model for short-term energy load forecasting. Energies 11(1), 213 (2018)

    Article  Google Scholar 

  55. A.G. Bakirtzis, J.B. Theocharis, S.J. Kiartzis, K.J. Satsios, Short term load forecasting using fuzzy neural networks. IEEE Trans. Power Syst. 10(3), 1518–1524 (1995)

    Article  Google Scholar 

  56. H. Mori, H. Kobayashi, Optimal fuzzy inference for short-term load forecasting, in Proceedings of Power Industry Computer Applications Conference, (IEEE, 1995, May), pp. 312–318

    Google Scholar 

  57. Y.Y. Hsu, K.L. Ho, Fuzzy expert systems: An application to short-term load forecasting, in IEE Proceedings C (Generation, Transmission and Distribution, vol. 139, no. 6, (IET Digital Library, 1992, November), pp. 471–477

    Google Scholar 

  58. J.S.R. Jang, Fuzzy modeling using generalized neural networks and kalman filter algorithm, in AAAI, vol. 91, (1991, July), pp. 762–767

    Google Scholar 

  59. A. Abraham, Adaptation of fuzzy inference system using neural learning, in Fuzzy systems engineering, (Springer, Berlin, Heidelberg, 2005), pp. 53–83

    Chapter  Google Scholar 

  60. Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming, S. Yang, RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst. 23(3), 853–858 (2008)

    Article  Google Scholar 

  61. M. Yousefi, N. Kianpoor, A. Hajizadeh, M.N. Soltani, Smart energy management system for residential homes regarding uncertainties of photovoltaic array and plug-in electric vehicle, in IEEE Proceeding, (2019), pp. 1–6

    Google Scholar 

  62. Q. Yang, S. Sun, S. Deng, Q. Zhao, M. Zhou, Optimal sizing of PEV fast charging stations with Markovian demand characterization. IEEE Trans. Smart Grid. 10(4), 4457–4466 (2019)

    Google Scholar 

  63. USDOT-FHWA, National Household Travel Survey, Technical Report, Department of Transportation, Federal Highway Administration, U.S. http://nhts.ornl.gov/index.shtml (2009)

  64. Source: Pecan Street Inc. Dataport 2018

    Google Scholar 

  65. M. Rahmani-Andebili, H. Shen, Energy scheduling for a smart home applying stochastic model predictive control, in 2016 25th International Conference on Computer Communication and Networks (ICCCN), (IEEE, 2016, August), pp. 1–6

    Google Scholar 

  66. P. Gilman, A. Dobos, N. Diorio, J. Freeman, S. Janzou, D. Ryberg, SAM Photovoltaic Model Technical Reference Update, 93 pp. NREL/TP-6A20-67399 (2016)

    Google Scholar 

  67. A.P. Dobos, PVWatts Version 5 Manual, Technical Report, National Renewable Energy Laboratory. ww.nrel.gov/pulications (2014)

    Google Scholar 

  68. D.L. King, J.A. Kratochvil, W.E. Boyson, Photovoltaic array performance model (Department of Energy, United States, 2004), pp. 1–43

    Google Scholar 

  69. M. Beaudin, H. Zareipour, Home energy management systems: A review of modelling and complexity. Renew. Sust. Energ. Rev. 45, 318–335 (2015)

    Article  Google Scholar 

  70. J. Lundén, S. Werner, V. Koivunen, Distributed demand-side optimization with load uncertainty, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, (IEEE, 2013, May), pp. 5229–5232

    Google Scholar 

  71. N. Halman, D. Klabjan, C.L. Li, J. Orlin, D. Simchi-Levi, Fully polynomial time approximation schemes for stochastic dynamic programs, in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, (Society for Industrial and Applied Mathematics, 2008)

    Google Scholar 

  72. S. Albers, Online algorithms: A survey. Math. Program. Spring. (2003)

    Google Scholar 

  73. G.T. Costanzo, J. Kheir, G. Zhu, Peak-load shaving in smart homes via online scheduling, in 2011 IEEE International Symposium on Industrial Electronics, (IEEE, 2011, June), pp. 1347–1352

    Google Scholar 

  74. D.M. Bui, S.L. Chen, C.H. Wu, K.Y. Lien, C.H. Huang, K.K. Jen, Review on protection coordination strategies and development of an effective protection coordination system for DC microgrid, in 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), (IEEE, 2014, December), pp. 1–10

    Google Scholar 

  75. G. Pandey, S.N. Singh, B.S. Rajpurohit, F.M. Gonzalez-Longatt, Protection and energy management of zero net electric energy clusters of buildings, in 2015 IEEE Students Conference on Engineering and Systems (SCES), (IEEE, 2015, November), pp. 1–6

    Google Scholar 

  76. A. Soleimanisardoo, H.K. Karegar, H.H. Zeineldin, Differential frequency protection scheme based on off-nominal frequency injections for inverter-based islanded microgrids. IEEE Trans. Smart Grid 10(2), 2107–2114 (2019)

    Article  Google Scholar 

  77. S. Jamali, H. Borhani-Bahabadi, Protection method for radial distribution systems with DG using local voltage measurements. IEEE Trans. Power Deliv. 34(2), 651–660 (2019)

    Article  Google Scholar 

  78. S.T.P. Srinivas, K.S. Swarup, Optimal relay coordination and communication based protection for microgrid, in 2017 IEEE Region 10 Symposium (TENSYMP), (IEEE, 2017, July), pp. 1–5

    Google Scholar 

  79. A.A.A. Khodadoost, N. Bayati, M. Reza, G.B. Gharehpetian, S.H. Sadeghi, Fault Current Limiter optimal sizing considering different Microgrid operational modes using Bat and Cuckoo Search Algorithm. Arch. Electr. Eng, 67(2), 321–332 (2018)

    Google Scholar 

  80. N. Bayati, S.H.H. Sadeghi, A. Hosseini, Optimal placement and sizing of fault current limiters in distributed generation systems using a hybrid genetic algorithm. Eng. Technol. Appl. Sci. Res. 7(1), 1329–1333 (2016)

    Google Scholar 

  81. H. Lin, K. Sun, Z.H. Tan, C. Liu, J. Guerrero, J. Vasquez, Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 13, 770 (2019)

    Article  Google Scholar 

  82. N. Bayati, A. Dadkhah, S.H.H. Sadeghi, B. Vahidi, A.E. Milani, Considering variations of network topology in optimal relay coordination using time-current-voltage characteristic, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), (IEEE, 2017, June), pp. 1–5

    Google Scholar 

  83. D. Salomonsson, L. Soder, A. Sannino, Protection of low-voltage DC microgrids. IEEE Trans. Power Deliv. 24(3), 1045–1053 (2009)

    Article  Google Scholar 

  84. M.A. Zamani, T.S. Sidhu, A. Yazdani, A protection strategy and microprocessor-based relay for low-voltage microgrids. IEEE Trans. Power Deliv. 26(3), 1873–1883 (2011)

    Article  Google Scholar 

  85. E. Rappaport, Does grounding make a system safe?: Analyzing the factors that contribute to electrical safety. IEEE Ind. Appl. Mag. 21(3), 48–57 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Bayati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kianpoor, N., Bayati, N., Yousefi, M., Hajizadeh, A., Soltani, M. (2020). Net-Zero Energy Buildings: Modeling, Real-Time Operation, and Protection. In: Asadi, S., Mohammadi-Ivatloo, B. (eds) Food-Energy-Water Nexus Resilience and Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-030-40052-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40052-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40051-4

  • Online ISBN: 978-3-030-40052-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics