Skip to main content

Enabling Technology for Water Smart Agriculture: A Test Bed for Water and Energy Efficiency for Developing Nations

  • Chapter
  • First Online:
Food-Energy-Water Nexus Resilience and Sustainable Development
  • 501 Accesses

Abstract

This chapter presents a framework for water smart irrigation system through the use of modern yet low-cost technology. The proposed framework can be employed as a test bed for not only water efficiency but also energy efficiency since the savings in water pumping directly leads to the savings in energy. It presents an approach to integrate real-time condition monitoring of soil and climate data through wireless sensor nodes that can enable the control system to achieve optimal scheduling of water actuation for high irrigation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pakistan’s water technology foresight (2014), Pakistan Council for Science and Technology

    Google Scholar 

  2. F. Gassert, P. Reig, T. Luo, A. Maddocks, Aqueduct Country and River Basin Rankings (World Resource Institute, 2013)

    Google Scholar 

  3. Pakistan Economic Survey (2017–18), Finance Division, Government of Pakistan

    Google Scholar 

  4. K.-x. Wang, F. Qiang, Z.-b. Wang, Q. Wu, Simulation and verification of two-dimensional numerical simulation model of soil water infiltration under straw mulch, in 2011 International Conference on New Technology of Agricultural, (IEEE)

    Google Scholar 

  5. A. Eliran, N. Goldshleger, A. Yahalom, E. Ben-Dor, M. Agassi, Empirical model for backscattering at millimeter-wave frequency by bare soil subsurface with varied moisture content. IEEE Geosci. Remote Sens. Lett. 10(6), 1324 (2013)

    Article  Google Scholar 

  6. T.J. Jackson, T.J. Schmugge, P.E. O’Neill, M.B. Parlange, Soil water infiltration observation with microwave radiometers. IEEE Trans. Geosci. Remote Sens. 36(5), 1376 (1998)

    Article  Google Scholar 

  7. T.W. Ley, R.G. Stevens, R.R. Topielec, W.H. Neibling, Soil Water Monitoring and Measurement (Pacific Northwest Publication)

    Google Scholar 

  8. T.J. Dean et al., Soil moisture measurement by an improved capacitance technique, Part I & II. J. Hydrol., Elsevier (1987)

    Google Scholar 

  9. I. Goodwin, How to use tensiometers, Department of Environment and Primary Industries Melbourne, Victoria, Nov 2009. Accessed on 15 Oct 2019. [Online]. Available: http://agriculture.vic.gov.au/agriculture/horticulture/vegetables/vegetable-growing-and-management/how-to-use-tensiometers

  10. C.C. Shock, F.-X. Wang, Soil water tension, a powerful tool for productivity and stewardship. HortScience: A publication of the American Society for Horticultural Science 46(2) (2010)

    Google Scholar 

  11. D. Stannard, Theory, construction and operation of simple tensiometers. Ground Water Monitor. Remed. 6(3), 70 (1986)

    Article  Google Scholar 

  12. P. Aravind et al., A wireless multi-sensor system for soil moisture measurement, in Proceedings of IEEE Sensors, (2015)

    Google Scholar 

  13. M. Saleh, I.H. Elhajj, D. Asmar, I. Bashour, S. Kidess, Experimental evaluation of low-cost resistive soil moisture sensors, in Proceedings of IEEE International Multidisciplinary Conference on Engineering Technology, (2016)

    Google Scholar 

  14. M. Chakraborty, A. Kalita, K. Biswas, PMMA-coated capacitive type soil moisture sensor: Design, fabrication, and testing. IEEE Trans. Instrum. Meas. 68(1), 189 (2019)

    Article  Google Scholar 

  15. M. Protim Goswami, B. Montazer, U. Sarma, Design and characterization of a fringing field capacitive soil moisture sensor. IEEE Trans. Instrum. Meas. 68(3), 913 (2019)

    Article  Google Scholar 

  16. K. Sarabandi, E.S. Li, Microstrip ring resonator for soil moisture measurements. IEEE Trans. Geosci. Remote Sens. 35(5), 1223 (1997)

    Article  Google Scholar 

  17. C. Umenyiora et al., Dielectric constant of sand using TDR and FDR measurements and prediction models. IEEE Transact. Plasma Sci. 40(10), 2408 (2012)

    Article  Google Scholar 

  18. J.R. Holdem, R.B. Keam, J.A. Schoonees, Estimation of the number of frequencies and bandwidth for the surface measurement of soil moisture as a function of depth. IEEE Trans. Instrum. Meas. 49(5), 964 (2000)

    Article  Google Scholar 

  19. J.P. Bell, J.S.G. McCulloch, Soil moisture estimation by the neutron scattering method in Britain. J. Hydrol. 4, 254 (1966)

    Article  Google Scholar 

  20. V.C. Gungor, G.P. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258 (2009)

    Article  Google Scholar 

  21. I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921 (2007)

    Article  Google Scholar 

  22. Pakistan table for frequency allocation (2004), Pakistan Telecommunication Authority

    Google Scholar 

  23. A. Manjeshwar, D.P. Agrawal, TEEN: A routing protocol for enhanced efficiency in wireless sensor networks, in Proceedings 15th International Parallel and Distributed Processing Symposium, (2000)

    Google Scholar 

  24. L. Tang, Y. Sun, O. Gurewitz, D.B. Johnson, PW-MAC: An energy-efficient predictive-wakeup MAC protocol for wireless sensor networks, in Proceedings IEEE INFOCOM, (2011)

    Google Scholar 

  25. S.C. Ergen, P. Varaiya, PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Trans. Mob. Comput. 5(7), 920 (2006)

    Article  Google Scholar 

  26. W. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocols for wireless microsensor networks, in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, (2000)

    Google Scholar 

  27. Emrol, Maintenance-free batteries for standby and electric drive systems, Accessed on 15 Oct 2019. [Online]. Available: https://emrol.com/en/maintenance-free-batteries/

  28. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Perv. Comput. 4(1), 18 (2005)

    Article  Google Scholar 

  29. D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, L. Benini, Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans. Ind. Electron. 55(7) (2008)

    Google Scholar 

  30. A. Omairi, Z. Ismail, K. Danapalasingam, M. Ibrahim, Power harvesting in wireless sensor networks and its adaptation with maximum power point tracking: Current technology and future directions. IEEE Internet Things J. 4(6) (2017)

    Google Scholar 

  31. B. Haug, Wireless sensor nodes can be powered by temperature gradients; no batteries needed: Harvesting energy from thermoelectric generators. IEEE Power Elect. Mag. 4(4), 24 (2017)

    Article  Google Scholar 

  32. U. Olgun, C.-C. Chen, J.L. Volakis, Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Ant. Wireless Prop. Lett. 10, 262 (2011)

    Article  Google Scholar 

  33. Y. Han, Y. Feng, Z. Yu, W. Lou, H. Liu, A study on piezoelectric energy-harvesting wireless sensor networks deployed in a weak vibration environment. IEEE Sensors J. 17(20), 6770 (2017)

    Article  Google Scholar 

  34. A. Berrueta, A. Ursúa, I.S. Martín, A. Eftekhari, P. Sanchis, Supercapacitors: Electrical characteristics, modeling, applications, and future trends. IEEE Access 7, 50869 (2019)

    Article  Google Scholar 

  35. T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17(7) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Muhammad Raza Kazmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kazmi, S.M.R. (2020). Enabling Technology for Water Smart Agriculture: A Test Bed for Water and Energy Efficiency for Developing Nations. In: Asadi, S., Mohammadi-Ivatloo, B. (eds) Food-Energy-Water Nexus Resilience and Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-030-40052-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40052-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40051-4

  • Online ISBN: 978-3-030-40052-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics