Skip to main content

Velocity Distributions and Boundary-Layer Thicknesses in Turbulent Flows

  • Chapter
  • First Online:
Rheology of Drag Reducing Fluids
  • 349 Accesses

Abstract

Chapter 3 deals with secondary flows that are generated in curved pipes and rotating straight pipes by the centrifugal force or Coriolis force that gets superimposed on the axial velocity flow field. Velocity distributions and boundary-layer thicknesses in the turbulent flows are obtained from the solution of the momentum integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barua, S. H. (1963). On secondary flow in stationary curved pipes. The Quarterly Journal of Mechanics and Applied Mathematics, 14, 61–77.

    Article  MathSciNet  Google Scholar 

  • Benton, G. S. (1956). The effects of the earth’s rotation on laminar flow in pipes. Journal of Applied Mechanics, 23, 123–127.

    MATH  Google Scholar 

  • Benton, G. S., & Boyer, D. (1966). Flow through a rapidly rotating conduit of arbitrary cross-section. Journal of Fluid Mechanics, 26(1), 69–79.

    Article  Google Scholar 

  • Devarajan, G. V. (1976). Secondary flows of non-newtonian fluids (PhD Thesis). University of Salford, U.K.

    Google Scholar 

  • Dodge, D. W., & Metzner, A. B. (1959). Turbulent flow of non-newtonian systems. AICHE Journal, 5(2), 189–204.

    Article  Google Scholar 

  • Gunn, R. W., Mena, B., & Walters, K. (1974). On newtonian and non-newtonian flow in a rotating pipe. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 25(5), 591–606.

    Article  Google Scholar 

  • Ito, H. M. (1956). Reports of the institute of high speed mechanics. Tohoku University, Japan.

    Google Scholar 

  • Ito, H. M. (1959a). Memoirs of the Institute of High Speed Mechanics. Tohoku University, Japan, 14, 137.

    Google Scholar 

  • Ito, H. M. (1959b). Friction factors for turbulent flow in curved pipes. Transactions ASME, Journal of Basic Engineering, 81(2), 123–132.

    Article  Google Scholar 

  • Ito, H. M., & Nanbu, K. (1971). Flow in rotating straight pipes of circular cross section. Transactions ASME Journal of Basic Engineering, 93(3), 383–394.

    Article  Google Scholar 

  • Jones, D. T., Trevors, J. R., & Walters, K. (1967). A note on the motion of a viscous liquid in a rotating straight pipe. ZAMP, 18(6), 774–781.

    MATH  Google Scholar 

  • Mori, I., & Nakayama, W. (1968). Convective heat transfer in rotating radial circular pipes. International Journal of Heat and Mass Transfer, 11(6), 1027–1040.

    Article  Google Scholar 

  • Nanbu, K. (1970). Memoirs of institute of high speed mechanics. Tohoku University, Japan, 25(262).

    Google Scholar 

  • Oliver, D. R. (1966). The expansion/contraction behavior of laminar liquid jets. The Canadian Journal of Chemical Engineering, 44(2), 100–107.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1969). Drag reduction in large tubes and the behavior of annular films of drag reducing fluids. The Canadian Journal of Chemical Engineering, 47(6), 525–529.

    Article  Google Scholar 

  • Shenoy, A. V. (1986). Turbulent flow of mildly elastic fluids through rotating straight circular tubes. Journal of Applied Sciences Research, 43(1), 39–54.

    MATH  Google Scholar 

  • Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.

    Article  Google Scholar 

  • Shenoy, A. V., Ranade, V. R., & Ulbrecht, J. J. (1980). Turbulent flow of mildly viscoelastic liquids in curved tubes. Chemical Engineering Communications, 5(5–6), 269–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenoy, A. (2020). Velocity Distributions and Boundary-Layer Thicknesses in Turbulent Flows. In: Rheology of Drag Reducing Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-40045-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40045-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40044-6

  • Online ISBN: 978-3-030-40045-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics