Skip to main content

Velocity Profiles and Friction Factors in Turbulent Pipe Flows

  • Chapter
  • First Online:
Rheology of Drag Reducing Fluids
  • 395 Accesses

Abstract

Chapter 2 focuses on velocity profiles and friction factors in turbulent pipe flows of drag reducing fluids, and expressions have been developed using similar assumptions like those for Newtonian fluids and power-law fluids. Flow through smooth straight circular pipes are analyzed, and expressions for the developing entrance lengths are derived. Since, in industrial practice, there are likely to be several situations wherein a drag reducing fluid enters an annular space from a large upstream reservoir, the velocity and pressure distributions in the fully developed and entrance region of annular ducts are also treated in this chapter. Not all pipes are smooth, and in reality, they have a certain level of surface defects marked by protrusions or indentations. Expression for fully developed velocity profiles in rough straight circular pipes is presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astarita, G. (1965). Possible interpretation of the mechanism of drag reduction in viscoelastic liquids. Industrial & Engineering Chemistry Fundamentals, 4(3), 354–356.

    Article  Google Scholar 

  • Astarita, G., & Nicodemo, L. (1966). Velocity distributions and Normal stresses in viscoelastic turbulent pipe flow. AICHE Journal, 12, 478–484.

    Article  Google Scholar 

  • Astarita, G., Greco, G. J., & Nicodemo, L. (1969). A phenomenological interpretation and correlation of drag reduction. AICHE Journal, 15, 564–567.

    Article  Google Scholar 

  • Azouz, I., & Shirazi, S. A. (1997). Numerical simulation of drag reducing turbulent flow in annular conduits. Transfer ASME Journal Fluids Engineering, 119(4), 838–846.

    Article  Google Scholar 

  • Bogue, D. C., & Metzner, A. B. (1963). Velocity profiles in turbulent pipe flow. Industrial & Engineering Chemistry Fundamentals, 2, 143–152.

    Article  Google Scholar 

  • Brandt, H., McDonald, A. T., & Boyle, F. W. (1969). Turbulent skin friction of dilute polymer solutions in rough pipes. In C. S. Wells (Ed.), Viscous drag reduction (pp. 159–171). New York: Plenum Press.

    Chapter  Google Scholar 

  • Clapp, R. M. (1961). Intern. developments in heat transfer (p. 652-61, D-159, D-211-5). New York: ASME.

    Google Scholar 

  • Darby, R., & Chang, H. D. (1984). Generalized correlation for friction loss in drag reducing polymer solutions. AICHE Journal, 30(2), 274–280.

    Article  Google Scholar 

  • Dodge, D. W., & Metzner, A. B. (1959). Turbulent flow of non-newtonian systems. AICHE Journal, 5(2), 189–204.

    Article  Google Scholar 

  • Elata, C., Lehrer, J., & Kahanovitz, A. (1966). Turbulent shear flow of polymer solutions. Israel Journal of Technology, 4(1), 87–95.

    Google Scholar 

  • Ernst, W. D. (1966). Investigation of turbulent shear flow of dilute aqueous CMC solutions. AICHE Journal, 12(3), 581–586.

    Article  Google Scholar 

  • Fabula, A. G. (1966). An experimental study of grid turbulence in dilute high-polymer solutions (PhD Thesis). Pennsylvania State University.

    Google Scholar 

  • Fenter, F. W. (1959). The turbulent boundary layer on uniformly rough surfaces at supersonic speeds (Report No. RE-E9R-2). Vought Research Center, Chance Vought Aircraft Inc.

    Google Scholar 

  • Friehe, C. A., & Schwarz, W. H. (1969). The use of pitot-static tubes and hot-film anemometers in dilute polymer solutions. In C. S. Wells (Ed.), Viscous drag reduction (pp. 281–296). New York: Plenum Press.

    Chapter  Google Scholar 

  • Hinze, J. D. (1955). Turbulence. New York: McGraw-Hill.

    Google Scholar 

  • James, D. F. (1967). Laminar flow of dilute polymer solutions around circular cylinders (PhD Thesis). California Institute of Technology.

    Google Scholar 

  • Kilbane, J. K., & Greenkorn, R. A. (1966). Correlation of friction factors for viscoelastic fluids in tubes, Soc. petrol. engrs. AIME Paper No. SPE 1679.

    Google Scholar 

  • Krope, A., Krope, J., & Lipus, L. C. (2005). A model for velocity profile in turbulent boundary layer with drag reducing surfactants. Applied Rheology, 15(3), 152–159.

    Article  Google Scholar 

  • Langhaar, H. L. (1951). Dimensional analysis and theory of models. New York: Wiley.

    MATH  Google Scholar 

  • Meter, D. M. (1964). Tube flow of non-newtonian polymer solutions: Part II – turbulent flow. AICHE Journal, 10(6), 881–884.

    Article  Google Scholar 

  • Meyer, W. A. (1966). A correlation of the frictional characteristics for turbulent flow of dilute viscoelastic non-newtonian fluids in pipes. AICHE Journal, 12(3), 522–525.

    Article  Google Scholar 

  • Millikan, C. (1939). A critical discussion of turbulent flows in channels and circular tubes. In Proc. 5th intern. congr. appl. mech. New York: Wiley.

    Google Scholar 

  • Nikuradse, J. (1932). Laws of turbulent flow in smooth pipes (English translation). NASA, TT F-10, 359.

    Google Scholar 

  • Patterson, G. K., & Florez, G. L. (1969). Velocity profiles during drag reduction. In C. S. Wells (Ed.), Viscous drag reduction (pp. 233–250). New York: Plenum Press.

    Chapter  Google Scholar 

  • Pruitt, G. T., & Crawford, H. R. (1965). Investigations for the use of additives for the reduction of pressure losses. Western Company, Contract No. DA-23-072-AMC-209 (T) Final Report.

    Google Scholar 

  • Ramadan, A., Saasen, A., & Skalle, P. (2004). Application of the minimum transport velocity model for drag-reducing polymers. The Journal of Petroleum Science and Engineering, 44(3), 303–316.

    Article  Google Scholar 

  • Schlichting, H. (1960). Boundary layer theory. New York: McGraw Hill.

    MATH  Google Scholar 

  • Sellin, R. H., Hoyt, J. W., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 1: Basic aspects. Journal of Hydraulic Research, 20(1), 29–68.

    Article  Google Scholar 

  • Seyer, F. A., & Catania, P. J. (1972). Laminar and turbulent entry flow of polymer solutions. The Canadian Journal of Chemical Engineering, 50(1), 31–36.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1967a). Turbulent flow properties of viscoelastic fluids. The Canadian Journal of Chemical Engineering, 45(3), 121–126.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1967b). Turbulence phenomena in drag reducing systems, 60th annual AICHE meeting, New York.

    Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1969a). Turbulence phenomena in drag reducing systems. AICHE Journal, 15(3), 426–434.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1969b). Drag reduction in large tubes and the behavior of annular films of drag reducing fluids. The Canadian Journal of Chemical Engineering, 47(6), 525–529.

    Article  Google Scholar 

  • Shaver, R. G., & Merrill, E. W. (1959). Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes. AICHE Journal, 5(2), 181–188.

    Article  Google Scholar 

  • Shenoy, A. V. (1988). Encyclopedia of fluid mechanics, vol. 7, ch. 16. In N. P. Cheremisinoff (Ed.), Turbulent flow velocity profiles in drag-reducing fluids (pp. 479–503). Houston, TX: Gulf Publishing Co.

    Google Scholar 

  • Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.

    Article  Google Scholar 

  • Shenoy, A. V., & Saini, D. R. (1982). A new velocity profile model for turbulent pipe flow of power-law fluids. The Canadian Journal of Chemical Engineering, 60(5), 694–696.

    Article  Google Scholar 

  • Shenoy, A. V., & Shintre, S. N. (1986). Developing and fully developed turbulent flow of drag reducing fluids in an annular duct. The Canadian Journal of Chemical Engineering, 64(2), 190–195.

    Article  Google Scholar 

  • Shenoy, A. V., & Talathi, M. M. (1985). Turbulent pipe flow velocity profile model for drag-reducing fluids. AICHE Journal, 31(3), 520–522.

    Article  Google Scholar 

  • Shintre, S. N., Mashelkar, R. A., & Ulbrecht, J. (1977). An approximate theoretical analysis and experimental verification of turbulent entrance region flow of drag reducing fluids. Rheologica Acta, 16(5), 490–496.

    Article  MATH  Google Scholar 

  • Singh, R. P., Nigam, K. K., & Mishra, P. (1980). Developing and fully developed turbulent flow in an annular duct. Journal of Chemical Engineering of Japan, 13(5), 349–353.

    Article  Google Scholar 

  • Skelland, A. H. (1967). Non-newtonian flow and heat transfer. New York: Wiley.

    Google Scholar 

  • Smith, K. A., Merrill, E. W., Mickley, H., & Virk, P. (1967). Anomalous pitot tube and hot film measurements in dilute polymer solutions. Chemical Engineering Science, 22(4), 619–626.

    Article  Google Scholar 

  • Spangler, J. G. (1969). Studies of viscous drag reduction with polymers including turbulence measurements and roughness effects. In C. S. Wells (Ed.), Viscous drag reduction (pp. 131–157). New York: Plenum Press.

    Chapter  Google Scholar 

  • Stein, M. A., Kessler, D. P., & Greenkorn, R. A. (1980). An empirical model for velocity profiles for turbulent flow in smooth pipes. AICHE Journal, 26(2), 308–310.

    Article  Google Scholar 

  • Tiu, C. (1979). Turbulent flow behaviour of dilute polymer solutions in an annulus, Soc. Rheol. Golden Jubilee Meeting.

    Google Scholar 

  • Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).

    Google Scholar 

  • Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.

    Article  Google Scholar 

  • Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A., & Mollo-Christensen, E. L. (1967). The Toms phenomenon: Turbulent pipe flow of dilute polymer solutions. Journal of Fluid Mechanics, 30(2), 305–328.

    Article  Google Scholar 

  • Wells, C. S. (1965). Anomalous turbulent flow of non-newtonian fluids. AIAA Journal, 3(10), 1800–1805.

    Article  Google Scholar 

  • White, A. (1967). Turbulence and drag reduction with polymer additives. Research Bulletin No. 4, Hendon College of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenoy, A. (2020). Velocity Profiles and Friction Factors in Turbulent Pipe Flows. In: Rheology of Drag Reducing Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-40045-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40045-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40044-6

  • Online ISBN: 978-3-030-40045-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics