Skip to main content

Winding the Clock: Development of Hypothalamic Structures Controlling Biological Timing and Sleep

  • Chapter
  • First Online:
Developmental Neuroendocrinology

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

Abstract

The daily cycle of sleep and wake governs all aspects of behavior and is under tight homeostatic regulation. The core circadian oscillator in turn restricts sleep to specific intervals of the solar day. The neurons that regulate both sleep and circadian timing reside largely in the hypothalamus, and are linked in a complex, reciprocally connected, and still incompletely characterized network. While our knowledge of the neural circuitry controlling circadian rhythms and sleep has advanced considerably, our understanding of the mechanisms by which they are assembled during embryonic and postnatal development lag far behind. In this chapter, we review advances in the understanding of hypothalamic circuitry controlling circadian rhythms and sleep and our current knowledge of the gene regulatory networks that guide their development. In addition, we discuss the potential for future studies of hypothalamic development to provide new insights into the mechanisms by which animals regulate the timing and duration of sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  CAS  PubMed  Google Scholar 

  • Aton SJ, Herzog ED (2005) Come together, right…now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aujla PK, Naratadam GT, Xu L, Raetzman LT (2013) Notch/Rbpjkappa signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140:3511–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzani E, Lassi G, Maggi S, Sethi S, Parsons MJ, Simon M, Nolan PM, Tucci V (2016) The Zfhx3-mediated axis regulates sleep and interval timing in mice. Cell Rep 16:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J, Wong GW, Herzog ED et al (2014) Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 7:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedont JL, LeGates TA, Buhr E, Bathini A, Ling JP, Bell B, Wu MN, Wong PC, Van Gelder RN, Mongrain V et al (2017) An LHX1-regulated transcriptional network controls sleep/wake coupling and thermal resistance of the central circadian clockworks. Curr Biol 27:128–136

    Article  CAS  PubMed  Google Scholar 

  • Biehl MJ, Kaylan KB, Thompson RJ, Gonzalez RV, Weis KE, Underhill GH, Raetzman LT (2018) Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 442:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaess S, Szabo N, Haddad-Tovolli R, Zhou X, Alvarez-Bolado G (2014) Sonic hedgehog signaling in the development of the mouse hypothalamus. Front Neuroanat 8:156

    PubMed  Google Scholar 

  • Blumberg MS, Gall AJ, Todd WD (2014) The development of sleep-wake rhythms and the search for elemental circuits in the infant brain. Behav Neurosci 128:250–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  • Brunner DP, Dijk DJ, Tobler I, Borbely AA (1990) Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr Clin Neurophysiol 75:492–499

    Article  CAS  PubMed  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AM, Resch JM, McCarroll SA et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Alcocer V, Abel JH, Sun TC, Petzold LR, Doyle FJ 3rd, Simms CL, Herzog ED (2018) Ontogeny of circadian rhythms and synchrony in the suprachiasmatic nucleus. J Neurosci 38:1326–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18:3227–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KS, Xu M, Zhang Z, Chang WC, Gaj T, Schaffer DV, Dan Y (2018) A hypothalamic switch for REM and non-REM sleep. Neuron 97(1168–1176):e1164

    Google Scholar 

  • Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP et al (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DD, Gorman MR, Hatori M, Meadows JD, Panda S, Mellon PL (2013) Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein Six6. J Biol Rhythm 28:15–25

    Article  CAS  Google Scholar 

  • Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys 246:R161–R183

    CAS  Google Scholar 

  • Dalal J, Roh JH, Maloney SE, Akuffo A, Shah S, Yuan H, Wamsley B, Jones WB, de Guzman Strong C, Gray PA et al (2013) Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev 27:565–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszuta A, Gambarelli F (1985) Early postnatal development of EEG and sleep-waking cycle in two inbred mouse strains. Brain Res 354:39–47

    Article  CAS  PubMed  Google Scholar 

  • Davis KF, Parker KP, Montgomery GL (2004) Sleep in infants and young children: part one: normal sleep. J Pediatr Health Care 18:65–71

    Article  PubMed  Google Scholar 

  • de Melo J, Zibetti C, Clark BS, Hwang W, Miranda-Angulo AL, Qian J, Blackshaw S (2016) Lhx2 is an essential factor for retinal gliogenesis and Notch signaling. J Neurosci 36:2391–2405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dittrich L, Morairty SR, Warrier DR, Kilduff TS (2015) Homeostatic sleep pressure is the primary factor for activation of cortical nNOS/NK1 neurons. Neuropsychopharmacology 40:632–639

    Article  CAS  PubMed  Google Scholar 

  • Dzierzewski JM, Dautovich N, Ravyts S (2018) Sleep and cognition in older adults. Sleep Med Clin 13:93–106

    Article  PubMed  Google Scholar 

  • Eldred KC, Hadyniak SE, Hussey KA, Brenerman B, Zhang PW, Chamling X, Sluch VM, Welsbie DS, Hattar S, Taylor J et al (2018) Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362:eaau6348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmenhorst D, Elmenhorst EM, Hennecke E, Kroll T, Matusch A, Aeschbach D, Bauer A (2017) Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci USA 114:4243–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JGP, Bittencourt JC, Adamantidis A (2017) Melanin-concentrating hormone and sleep. Curr Opin Neurobiol 44:152–158

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Lombardi DA, Marucci-Wellman H, Roenneberg T (2017) Chronotypes in the US—influence of age and sex. PLoS One 12:e0178782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foreman SW, Thomas KA, Blackburn ST (2008) Individual and gender differences matter in preterm infant state development. J Obstet Gynecol Neonatal Nurs 37:657–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MG, Heller HC (1997) Development of diurnal organization of EEG slow-wave activity and slow-wave sleep in the rat. Am J Phys 273:R472–R478

    CAS  Google Scholar 

  • Fu T, Towers M, Placzek MA (2017) Fgf10(+) progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144:3278–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall AJ, Todd WD, Ray B, Coleman CM, Blumberg MS (2008) The development of day-night differences in sleep and wakefulness in Norway rats and the effect of bilateral enucleation. J Biol Rhythm 23:232–241

    Article  Google Scholar 

  • Galland BC, Taylor BJ, Elder DE, Herbison P (2012) Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med Rev 16:213–222

    Article  PubMed  Google Scholar 

  • Hanne HM, Meadows JD, Trang C, Hereford B, Bharti K, Gorman MR, Mellon PL (2016) Deletion of SIX3 or VAX1 in the SCN impairs circadian rhythms and fertility. In Endocrine Society’s 98th Annual Meeting and Expo, April 1–4, 2016, Boston

    Google Scholar 

  • Hatori M, Gill S, Mure LS, Goulding M, O’Leary DD, Panda S (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3:e03357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, Zilionis R, Ratner A, Borges-Monroy R, Klein AM et al (2018) Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci 21:120–129

    Article  CAS  PubMed  Google Scholar 

  • Joseph D, Chong NW, Shanks ME, Rosato E, Taub NA, Petersen SA, Symonds ME, Whitehouse WP, Wailoo M (2015) Getting rhythm: how do babies do it? Arch Dis Child Fetal Neonatal Ed 100:F50–F54

    Article  PubMed  Google Scholar 

  • Jud C, Schmutz I, Hampp G, Oster H, Albrecht U (2005) A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proced Online 7:101–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Wu SF, Goering LM, Dorsky RI (2006) Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133:4451–4461

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Merkle FT, Gandhi AV, Gagnon JA, Woods IG, Chiu CN, Shimogori T, Schier AF, Prober DA (2015) Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 142:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim SA, Kim E, Liu C, Wickersham IR et al (2017) Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548:582–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M (2006) Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 11:873–885

    Article  CAS  PubMed  Google Scholar 

  • Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, Stojic L, Rayner TF, Stubbington MJT, Teichmann SA et al (2017) Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355:1433–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108:14306–14311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Maroof A, Wataya T, Sasai Y, Studer L, Eggan K, Schier AF (2015) Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles LE, Dement WC (1980) Sleep and aging. Sleep 3:1–220

    Article  CAS  PubMed  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morairty SR, Dittrich L, Pasumarthi RK, Valladao D, Heiss JE, Gerashchenko D, Kilduff TS (2013) A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci USA 110:20272–20277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson AB, Faraguna U, Zoltan JT, Tononi G, Cirelli C (2013) Sleep patterns and homeostatic mechanisms in adolescent mice. Brain Sci 3:318–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S (2018a) Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. Dev Biol 439:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA, Wu D, Taketo MM, Zhang J, Blackshaw S (2018b) Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev Biol 442:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa K, Suga H, Ozone C, Sakakibara M, Yamada T, Kano M, Mitsumoto K, Kasai T, Kodani Y, Nagasaki H et al (2018) Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors. Sci Rep 8:3615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohyama K, Das R, Placzek M (2008) Temporal progression of hypothalamic patterning by a dual action of BMP. Development 135:3325–3331

    Article  CAS  PubMed  Google Scholar 

  • Parsons MJ, Brancaccio M, Sethi S, Maywood ES, Satija R, Edwards JK, Jagannath A, Couch Y, Finelli MJ, Smyllie NJ et al (2015) The regulatory factor ZFHX3 modifies circadian function in SCN via an AT motif-driven Axis. Cell 162:607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99

    Article  CAS  PubMed  Google Scholar 

  • Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8:1405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D et al (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124:2935–2944

    CAS  PubMed  Google Scholar 

  • Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13:565–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AB, O’Neill JS (2009) Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20:36–44

    Article  PubMed  Google Scholar 

  • Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythm 18:80–90

    Article  Google Scholar 

  • Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpar A, Mulder J, Clotman F, Keimpema E et al (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20:176–188

    Article  CAS  PubMed  Google Scholar 

  • Roy A, de Melo J, Chaturvedi D, Thein T, Cabrera-Socorro A, Houart C, Meyer G, Blackshaw S, Tole S (2013) LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 33:6877–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, Zhdanova IV, American Academy of Sleep, M (2007) Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 30:1460–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T (2013) GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 7:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvatierra J, Lee DA, Zibetti C, Duran-Moreno M, Yoo S, Newman EA, Wang H, Bedont JL, de Melo J, Miranda-Angulo AL et al (2014) The LIM homeodomain factor Lhx2 is required for hypothalamic Tanycyte specification and differentiation. J Neurosci 34:16809–16820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93:747–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanDunk C, Hunter LA, Gray PA (2011) Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31:6457–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26:2137–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Meece K, Williams DJ, Lo KA, Zimmer M, Heinrich G, Martin Carli J, Leduc CA, Sun L, Zeltser LM et al (2015) Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J Clin Invest 125:796–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, Kawada M, Takahashi J, Hashimoto N, Sasai Y (2008) Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci USA 105:11796–11801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Dan Y (2016) Circuit-based interrogation of sleep control. Nature 538:51–59

    Article  CAS  PubMed  Google Scholar 

  • Wilcox AG, Vizor L, Parsons MJ, Banks G, Nolan PM (2017) Inducible knockout of mouse Zfhx3 emphasizes its key role in setting the pace and amplitude of the adult circadian clock. J Biol Rhythm 32:433–443

    Article  CAS  Google Scholar 

  • Wolf A, Ryu S (2013) Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 140:1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Kaufmann D, Moulton MJ, Panahi S, Gaynes JA, Watters HN, Zhou D, Xue HH, Fung CM, Levine EM et al (2017) Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biol 15:e2002257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J et al (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Liu Y, Qiu Z, Kumar S, Curran JE, Blangero J, Chen Y, Lehman DM (2017) Molecular profiling of human induced pluripotent stem cell-derived hypothalamic neurones provides developmental insights into genetic loci for body weight regulation. J Neuroendocrinol 29(2)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Blackshaw .

Editor information

Editors and Affiliations

Key References

Key References

  • Bedont et al. (2014)—Identified Lhx1 as a master regulation of neuropeptide expression in neurons of the suprachiasmatic nucleus, and demonstrated the necessity of these neuropeptides in stabilizing the master circadian clock.

  • Carmona-Alcocer et al. (2018)—Demonstrated that synchronized activity rhythms first emerge in the mouse suprachiasmatic nucleus by embryonic day 15, and show mature organization by postnatal day 2.

  • Dalal et al. (2013)—Identified Lhx9 as a critical regulator of development of hypocretin neurons.

  • Liu et al. (2017)—Identified Lhx6-positive neurons of the zona incerta as responsive to sleep pressure, and demonstrated that they are necessary and sufficient for promotion of sleep.

  • Parsons et al. (2015)—Identified Zfhx3 as a master regulator of the development of the suprachiasmatic nucleus.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D.W.T., Blackshaw, S. (2020). Winding the Clock: Development of Hypothalamic Structures Controlling Biological Timing and Sleep. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_5

Download citation

Publish with us

Policies and ethics