Skip to main content

Astrocytes and Development of Neuroendocrine Circuits

  • Chapter
  • First Online:
Developmental Neuroendocrinology

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

  • 573 Accesses

Abstract

Astrocytes, one of the most abundant cell types in the hypothalamus, perform a myriad of functions throughout all stages of development. Radial glia, astroglia-like progenitor cells, are fundamental for neurogenesis, neuronal migration, axon extension, and synaptic formation throughout the brain. These progenitor cells also give rise to mature astrocytes, which are essential for the proper functioning of the brain at all ages. In the hypothalamus, astrocytes play an important role in all neuroendocrine systems. Together with tanycytes, specialized glial cells surrounding the third ventricle of the hypothalamus, astrocytes maintain some of their developmental potential into adulthood, including their progenitor competence and ability to modulate synaptic plasticity. In this chapter, we will address what is known regarding the role of astrocytes in hypothalamic development. We will briefly cover some of the functions that astrocytes perform in specific neuroendocrine systems, as well as how the maintenance of certain developmental capacities during later stages of life is fundamental for systemic adaptation and homeostatic control. Although the roles of astrocytes in neuroendocrine control have received increasing attention in recent years, there is still much to be learned regarding these fascinating cells. Identification of functional astrocytic populations with specific markers will allow these cells to be targeted and more easily manipulated, so that we can begin to learn details about how astroglia participate in the development of specific hypothalamic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahima RS, Bjorbaek C, Osei S, Flier JS (1999) Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 140:2755–2762

    Article  CAS  PubMed  Google Scholar 

  • Ahmed EI, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL (2008) Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci 11:995–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen NJ, Lyons DA (2018) Glia as architects of central nervous system formation and function. Science 362:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  CAS  PubMed  Google Scholar 

  • Amateau SK, McCarthy MM (2002) Sexual differentiation of astrocyte morphology in the developing rat preoptic area. J Neuroendocrinol 14:904–910

    Article  CAS  PubMed  Google Scholar 

  • Argente-Arizon P, Ros P, Diaz F, Fuente-Martin E, Castro-Gonzalez D, Sanchez-Garrido MA, Barrios V, Tena-Sempere M, Argente J, Chowen JA (2016) Age and sex dependent effects of early overnutrition on metabolic parameters and the role of neonatal androgens. Biol Sex Differ 7:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prevot V (2007) Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 19:691–702

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1987) Development of the preoptic area: time and site of origin, migratory routes, and settling patterns of its neurons. J Comp Neurol 265:65–95

    Article  CAS  PubMed  Google Scholar 

  • Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialog Clin Neurosci 11:281–295

    Google Scholar 

  • Bellefontaine N, Hanchate NK, Parkash J, Campagne C, de Seranno S, Clasadonte J, d’Anglemont de Tassigny X, Prevot V (2011) Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93:74–89

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L, Poulain DA, Theodosis DT (1993) Radial glia-like cells in the supraoptic nucleus of the adult rat. J Neuroendocrinol 5:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bonfardin VD, Fossat P, Theodosis DT, Oliet SH (2010) Glia-dependent switch of kainate receptor presynaptic action. J Neurosci 30:985–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg ML, Reichenbach A, Lemus M, Oldfield BJ, Andrews ZB, Watt MJ (2016) Central administration of the ciliary neurotrophic factor analogue, axokine, does not play a role in long-term energy homeostasis in adult mice. Neuroendocrinology 103:223–229

    Article  CAS  PubMed  Google Scholar 

  • Boston BA, Blaydon KM, Varnerin J, Cone RD (1997) Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 278:1641–1644

    Article  CAS  PubMed  Google Scholar 

  • Bosworth AP, Allen NJ (2017) The diverse actions of astrocytes during synaptic development. Curr Opin Neurobiol 47:38–43

    Article  CAS  PubMed  Google Scholar 

  • Botchkina GI, Morin LP (1995) Ontogeny of radial glia, astrocytes and vasoactive intestinal peptide immunoreactive neurons in hamster suprachiasmatic nucleus. Brain Res Dev Brain Res 86:48–56

    Article  CAS  PubMed  Google Scholar 

  • Bouret SG, Simerly RB (2007) Development of leptin-sensitive circuits. J Neuroendocrinol 19(8):575–582

    Article  CAS  PubMed  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    Article  CAS  PubMed  Google Scholar 

  • Bourque CW, Oliet SH (1997) Osmoreceptors in the central nervous system. Annu Rev Physiol 59:601–619

    Article  CAS  PubMed  Google Scholar 

  • Bourque CW, Oliet SH, Richard D (1994) Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15:231–274

    Article  CAS  PubMed  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    Article  PubMed  Google Scholar 

  • Caruso C, Carniglia L, Durand D, Gonzalez PV, Scimonelli TN, Lasaga M (2012) Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP-protein kinase A pathway. Mol Cell Endocrinol 348:47–54

    Article  PubMed  CAS  Google Scholar 

  • Chowen JA, Busiguina S, Garcia-Segura LM (1995) Sexual dimorphism and sex steroid modulation of glial fibrillary acidic protein messenger RNA and immunoreactivity levels in the rat hypothalamus. Neuroscience 69:519–532

    Article  CAS  PubMed  Google Scholar 

  • Chowen JA, Argente-Arizon P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J (2016) The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 144:68–87

    Article  PubMed  Google Scholar 

  • Chung WS, Welsh CA, Barres BA, Stevens B (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18:1539–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clasadonte J, Poulain P, Hanchate NK, Corfas G, Ojeda SR, Prevot V (2011) Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci U S A 108:16104–16109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado P, Beyer C, Hutchison JB, Holman SD (1995) Hypothalamic distribution of astrocytes is gender-related in Mongolian gerbils. Neurosci Lett 184:86–89

    Article  CAS  PubMed  Google Scholar 

  • Csakvari E, Hoyk Z, Gyenes A, Garcia-Ovejero D, Garcia-Segura LM, Parducz A (2007) Fluctuation of synapse density in the arcuate nucleus during the estrous cycle. Neuroscience 144:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Csakvari E, Kurunczi A, Hoyk Z, Gyenes A, Naftolin F, Parducz A (2008) Estradiol-induced synaptic remodeling of tyrosine hydroxylase immunopositive neurons in the rat arcuate nucleus. Endocrinology 149:4137–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507(Pt 2):463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 25:3638–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ero C, Gewaltig MO, Keller D, Markram H (2018) A cell atlas for the mouse brain. Front Neuroinform 12:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Galaz MC, Morschl E, Chowen JA, Torres-Aleman I, Naftolin F, Garcia-Segura LM (1997) Role of astroglia and insulin-like growth factor-I in gonadal hormone-dependent synaptic plasticity. Brain Res Bull 44:525–531

    Article  CAS  PubMed  Google Scholar 

  • Fuente-Martin E, Garcia-Caceres C, Granado M, de Ceballos ML, Sanchez-Garrido MA, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizon P, Diaz F, Argente J, Horvath TL, Chowen JA (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman GI, Diano S, Horvath TL (2007) Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med 13:89–94

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Caceres C, Fuente-Martin E, Argente J, Chowen JA (2012) Emerging role of glial cells in the control of body weight. Mol Metab 1:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Segura LM, McCarthy MM (2004) Minireview: Role of glia in neuroendocrine function. Endocrinology 145:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Duenas M, Busiguina S, Naftolin F, Chowen JA (1995) Gonadal hormone regulation of neuronal-glial interactions in the developing neuroendocrine hypothalamus. J Steroid Biochem Mol Biol 53:293–298

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Lorenz B, DonCarlos LL (2008) The role of glia in the hypothalamus: implications for gonadal steroid feedback and reproductive neuroendocrine output. Reproduction 135(4):419–429

    Article  CAS  PubMed  Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatton GI (1997) Function-related plasticity in hypothalamus. Annu Rev Neurosci 20:375–397

    Article  CAS  PubMed  Google Scholar 

  • Holmes AP, Wong SQ, Pulix M, Johnson K, Horton NS, Thomas P, de Magalhaes JP, Plagge A (2016) Reductions in hypothalamic Gfap expression, glial cells and alpha-tanycytes in lean and hypermetabolic Gnasxl-deficient mice. Mol Brain 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J, Chowen JA, Perez-Tilve D, Pfluger PT, Bronneke HS, Levin BE, Diano S, Cowley MA, Tschop MH (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875–14880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu C, Hsieh YL, Ho ML, Hsu HK, Yu JY (2001) Sexually dimorphic effect of glutamate treatment on cell cycle arrestment of astrocytes from the preoptic area of neonatal rats. Dev Neurosci 23:399–405

    Article  CAS  PubMed  Google Scholar 

  • Joe N, Scott V, Brown CH (2014) Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration. J Neuroendocrinol 26:35–42

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT, Schneider A, DonCarlos LL, Breedlove SM, Jordan CL (2012) Astrocytes in the rat medial amygdala are responsive to adult androgens. J Comp Neurol 520:2531–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Glendining KA, Grattan DR, Jasoni CL (2016) Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus. Int J Dev Neurosci 53:18–25

    Article  CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    Article  CAS  PubMed  Google Scholar 

  • Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595

    Article  CAS  PubMed  Google Scholar 

  • Langub MC Jr, Watson RE Jr (1992) Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy. Endocrinology 130:364–372

    Article  CAS  PubMed  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(6):700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leloup C, Allard C, Carneiro L, Fioramonti X, Collins S, Penicaud L (2015) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120

    Article  PubMed  CAS  Google Scholar 

  • Liao G-Y, Bouyer K, Kamitakahara A, Sahibzada N, Wang C-H, Rutlin M, Simerly RB, Xu B (2015) Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus. Mol Metab 4(6):471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz B, Garcia-Segura LM, DonCarlos LL (2005) Cellular phenotype of androgen receptor-immunoreactive nuclei in the developing and adult rat brain. J Comp Neurol 492:456–468

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249

    Article  CAS  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  • Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764

    Article  CAS  PubMed  Google Scholar 

  • Marzban F, Tweedle CD, Hatton GI (1992) Reevaluation of the plasticity in the rat supraoptic nucleus after chronic dehydration using immunogold for oxytocin and vasopressin at the ultrastructural level. Brain Res Bull 28:757–766

    Article  CAS  PubMed  Google Scholar 

  • Melcangi RC, Galbiati M, Messi E, Piva F, Martini L, Motta M (1995) Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1-1: is transforming growth factor-beta the principle involved? Endocrinology 136:679–686

    Article  CAS  PubMed  Google Scholar 

  • Mohr MA, Garcia FL, DonCarlos LL, Sisk CL (2016) Neurons and glial cells are added to the female rat anteroventral periventricular nucleus during puberty. Endocrinology 157:2393–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mong JA, McCarthy MM (2002) Ontogeny of sexually dimorphic astrocytes in the neonatal rat arcuate. Brain Res Dev Brain Res 139:151–158

    Article  CAS  PubMed  Google Scholar 

  • Mong JA, Kurzweil RL, Davis AM, Rocca MS, McCarthy MM (1996) Evidence for sexual differentiation of glia in rat brain. Horm Behav 30:553–562

    Article  CAS  PubMed  Google Scholar 

  • Mong JA, Glaser E, McCarthy MM (1999) Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci 19:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel L, Higashimori H, Tolman M, Yang Y (2014) VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 34:10950–10962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, Tai A, Yang Y (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37:8706–8717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell JI, Krieger MS, Pfaff DW (1986) Quantitative autoradiographic analysis of estradiol retention by cells in the preoptic area, hypothalamus and amygdala. Exp Brain Res 62: 343–354

    Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  CAS  PubMed  Google Scholar 

  • Muller A, Hauk TG, Fischer D (2007) Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130:3308–3320

    Article  PubMed  Google Scholar 

  • Muller-Fielitz H, Stahr M, Bernau M, Richter M, Abele S, Krajka V, Benzin A, Wenzel J, Kalies K, Mittag J, Heuer H, Offermanns S, Schwaninger M (2017) Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat Commun 8:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munekawa K, Tamada Y, Iijima N, Hayashi S, Ishihara A, Inoue K, Tanaka M, Ibata Y (2000) Development of astroglial elements in the suprachiasmatic nucleus of the rat: with special reference to the involvement of the optic nerve. Exp Neurol 166:44–51

    Article  CAS  PubMed  Google Scholar 

  • Naftolin F, Mor G, Horvath TL, Luquin S, Fajer AB, Kohen F, Garcia-Segura LM (1996) Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology 137:5576–5580

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Qiwu Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda SR (1994) The neurobiology of mammalian puberty: has the contribution of glial cells been underestimated? J NIH Res 6:51–56

    Google Scholar 

  • Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A (2003) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 35:244–255

    Article  PubMed  Google Scholar 

  • Ojeda SR, Lomniczi A, Sandau US (2008) Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J Neuroendocrinol 20:732–742

    Article  CAS  PubMed  Google Scholar 

  • Olmos G, Naftolin F, Perez J, Tranque PA, Garcia-Segura LM (1989) Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience 32:663–667

    Article  CAS  PubMed  Google Scholar 

  • Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, Gallet S, Balland E, Malone SA, Pralong F, Cagnoni G, Schellino R, De Marchis S, Mazzone M, Pasterkamp RJ, Tamagnone L, Prevot V, Giacobini P (2015) Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 6:6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ (2016) Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 43:1298–1306

    Article  PubMed  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  • Perez J, Naftolin F, Garcia Segura LM (1990) Sexual differentiation of synaptic connectivity and neuronal plasma membrane in the arcuate nucleus of the rat hypothalamus. Brain Res 527:116–122

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter LS, Tweedle CD, Hatton GI (1985) Neuronal/glial plasticity in the supraoptic dendritic zone in response to acute and chronic dehydration. Brain Res 361:225–232

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687

    Article  CAS  PubMed  Google Scholar 

  • Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304(5667):110–115

    Article  CAS  PubMed  Google Scholar 

  • Poluch S, Juliano SL (2007) A normal radial glial scaffold is necessary for migration of interneurons during neocortical development. Glia 55:822–830

    Article  PubMed  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94:809–819

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J (2018) The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39:333–368

    Article  PubMed  Google Scholar 

  • Ramirez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C (2015) Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 411:28–37

    Article  CAS  PubMed  Google Scholar 

  • Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  • Rottkamp DM, Rudenko IA, Maier MT, Roshanbin S, Yulyaningsih E, Perez L, Valdearcos M, Chua S, Koliwad SK, Xu AW (2015) Leptin potentiates astrogenesis in the developing hypothalamus. Mol Metab 4:881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman RC, Gibson MJ, Silverman AJ (1991) Relationship of glia to GnRH axonal outgrowth from third ventricular grafts in hpg hosts. Exp Neurol 114:259–274

    Article  CAS  PubMed  Google Scholar 

  • Sims RE, Butcher JB, Parri HR, Glazewski S (2015) Astrocyte and neuronal plasticity in the somatosensory system. Neural Plast 2015:732014

    Article  PubMed  PubMed Central  Google Scholar 

  • Souttou S, Benabdesselam R, Siqueiros-Marquez L, Sifi M, Deliba M, Vacca O, Charles-Messance H, Vaillend C, Rendon A, Guillonneau X, Dorbani-Mamine L (2019) Expression and localization of dystrophins and beta-dystroglycan in the hypothalamic supraoptic nuclei of rat from birth to adulthood. Acta Histochem 121:218–226

    Article  CAS  PubMed  Google Scholar 

  • Stern JE (2015) Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J Neuroendocrinol 27:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez I, Fernandez B, Bodega G, Tranque P, Olmos G, Garcia-Segura LM (1987) Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus. Brain Res 465:89–95

    Article  CAS  PubMed  Google Scholar 

  • Sweeney P, Qi Y, Xu Z, Yang Y (2016) Activation of hypothalamic astrocytes suppresses feeding without altering emotional states. Glia 64:2263–2273

    Article  PubMed  Google Scholar 

  • Theodosis DT, Poulain DA (1984) Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Neuroscience 11:183–193

    Article  CAS  PubMed  Google Scholar 

  • Theodosis DT, Poulain DA (1999) Contribution of astrocytes to activity-dependent structural plasticity in the adult brain. Adv Exp Med Biol 468:175–182

    Article  CAS  PubMed  Google Scholar 

  • Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322:738–740

    Article  CAS  PubMed  Google Scholar 

  • Tweedle CD, Hatton GI (1977) Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res 181:59–72

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Hatton GI (2007) Interaction of extracellular signal-regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: role in burst firing. J Neurosci 27:13822–13834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Hatton GI (2009) Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci 29:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkin JW, Ferin M, Popilskis SJ, Silverman AJ (1991) Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology 129:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Balu DT, Coyle JT (2016) The rise and fall of the D-serine-mediated gliotransmission hypothesis. Trends Neurosci 39:712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosker H, Balu DT, Coyle JT (2017) Astroglial versus neuronal D-serine: check your controls! Trends Neurosci 40:520–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Friedman WJ, Dreyfus CF (2004) Differential regulation of neurotrophin expression in basal forebrain astrocytes by neuronal signals. J Neurosci Res 76:76–85

    Article  CAS  PubMed  Google Scholar 

  • Wu YE, Pan L, Zuo Y, Li X, Hong W (2017) Detecting activated cell populations using single-cell RNA-seq. Neuron 96:313–329.e316

    Article  CAS  PubMed  Google Scholar 

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab 25:1091–1102.e1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Chowen .

Editor information

Editors and Affiliations

Key References

Key References

  • Ahmed et al. (2008). Challanged the dogma of that pubertal hormones, as opposed to sex steroids during embryological/neonatal development did not affect neurogenesis.

  • Bouret et al. (2004). Seminal study in understanding how early metabolic/hormonal changes can have long-term effects on metabolism.

  • Malatestaet al. (2003). Important contributions in order to understand radial glia.

  • Mong et al. (1996). One of the first studies to demonstrate sex differences in glial cells in the hypothalamus.

  • Morel et al. (2017). Important advances in understanding differences in astrocytes in different brain regions.

  • Naftolin et al. (1996). An early study associating synaptic remodeling in the hypothalamus with a physiological outcome.

  • Perlmutter et al. (1985). A seminal study in understanding the physiological outcome of interactions between neurons and glia in the hypothalamus.

  • Pfrieger et al. (1997). A clear advance in undestanding the role of astrocytes in synaptic transmission.

  • Prevot et al. (2018). A recent update on the implications of tanycytes in neuroendocrine control.

  • Theodosis et al. (1986). A seminal study of neuron-glial interactions in physiology.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DonCarlos, L.L., Chowen, J.A. (2020). Astrocytes and Development of Neuroendocrine Circuits. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_14

Download citation

Publish with us

Policies and ethics