Skip to main content

Organization and Postnatal Development of Visceral Sensory Inputs to the Neuroendocrine Hypothalamus

  • Chapter
  • First Online:

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

Abstract

Sensory signals arising in the body’s internal organs are delivered to the central nervous system by spinal and vagal afferent neurons. These signals modulate pituitary hormone release via ascending neural pathways from the caudal brainstem to the neuroendocrine hypothalamus. Interoceptive (i.e., visceral) feedback regarding the moment-to-moment state of gastrointestinal and other physiological systems is critical for shaping and coordinating adaptive neuroendocrine functions, including hormonal responses to real or perceived homeostatic threats. This chapter summarizes the functional organization and postnatal development of visceral sensory inputs to the neuroendocrine hypothalamus in rats and mice, the two mammalian models in which most of the relevant data have been collected. A special emphasis is placed on hypothalamic inputs arising from noradrenergic (NA) and glucagon-like peptide 1 (GLP1) neurons, whose cell bodies occupy the caudal nucleus of the solitary tract (NTS) and medullary reticular formation (RF). The axonal projections of NA and GLP1 neurons directly target the hypothalamic medial preoptic area (mPOA), arcuate nucleus (ARC), paraventricular nucleus (PVN), and supraoptic nucleus (SON), where adrenergic and GLP1 receptor signaling modulates neuroendocrine gene expression, pulsatile activity, and pituitary hormone release. NA and GLP1 inputs to the neuroendocrine hypothalamus mature postnatally in rats and mice, likely contributing to the developmental maturation of pituitary hormone release in response to both interoceptive and exteroceptive signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218:187–208

    Article  PubMed  Google Scholar 

  • Bouret SG, Simerly RB (2007) Development of leptin-sensitive circuits. J Neuroendocrinol 19:575–582

    Article  CAS  PubMed  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci 24:2797–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briski KP, Shrestha PK (2016) Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience 331:62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Chia KF, Huang JJ, Lim RKS (1939) Vagus-post-pituitary reflex; antidiuretic effect. Clin J Physiol 14:161–172

    CAS  Google Scholar 

  • Chen C-T, Dun SL, Dun NJ, Chang J-K (1999) Prolactin-releasing peptide-immunoreactivity in A1 and A2 noradrenergic neurons of the rat medulla. Brain Res 822:276–279

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Axelrod J (1971) Development of the uptake and storage of L-[3H]norepinephrine in the rat brain. J Neurochem 18:2061–2075

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Day TA, Blessing W, Willoughby JO (1980) Noradrenergic and dopaminergic projections to the medial preoptic area of the rat. A combined horseradish peroxidase/catecholamine fluorescence study. Brain Res 193:543–548

    Article  CAS  PubMed  Google Scholar 

  • Day T, Ferguson AV, Renaud L (1985) Noradrenergic afferents facilitate the activity of tuberoinfundibular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 41:17

    Article  CAS  PubMed  Google Scholar 

  • Farkas I, Vastagh C, Farkas E, Balint F, Skrapits K, Hrabovszky E, Fekete C, Liposits Z (2016) Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways. Front Cell Neurosci 10:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713

    CAS  PubMed  Google Scholar 

  • Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300

    Article  CAS  PubMed  Google Scholar 

  • Grill HJ, Norgren R (1978) Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201:267–269

    Article  CAS  PubMed  Google Scholar 

  • Heppner KM, Baquero AF, Bennett CM, Lindsley SR, Kirigiti MA, Bennett B, Bosch MA, Mercer AJ, Ronnekleiv OK, True C, Grove KL, Smith MS (2017) GLP-1R signaling directly activates arcuate nucleus kisspeptin action in brain slices but does not rescue luteinizing hormone inhibition in ovariectomized mice during negative energy balance. eNeuro 4(1):ENEURO.0198-16

    Article  Google Scholar 

  • Huo L, Gamber KM, Grill HJ, Bjorbaek C (2008) Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Endocrinology 149:492–497

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim BA, Briski KP (2014) Role of dorsal vagal complex A2 noradrenergic neurons in hindbrain glucoprivic inhibition of the luteinizing hormone surge in the steroid-primed ovariectomized female rat: effects of 5-thioglucose on A2 functional biomarker and AMPK activity. Neuroscience 269:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Ueta Y, Kannan H, Yamashita H (1993) Synaptic inputs from the stomach to tuberoinfundibular neurons in the paraventricular nucleus of the hypothalamus in rats. Brain Res 617:151–154

    Article  CAS  PubMed  Google Scholar 

  • Kamilaris TC, Johnson EO, Calogero AE, Kalogeras KT, Bernardini R, Chrousos GP, Gold PW (1992) Cholecystokinin-octapeptide stimulates hypothalamic-pituitary-adrenal function in rats: role of corticotropin-releasing hormone. Endocrinology 130:1764–1774

    CAS  PubMed  Google Scholar 

  • Kaminski KL, Watts AG (2012) Intact catecholamine inputs to the forebrain are required for appropriate regulation of corticotrophin-releasing hormone and vasopressin gene expression by corticosterone in the rat paraventricular nucleus. J Neuroendocrinol 24:1517–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khachaturian H, Sladek JR (1980) Simultaneous monoaminehistofluorescence and neuropeptide immunocytochemistry: III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei. Peptides 1:77–95

    Article  CAS  PubMed  Google Scholar 

  • Kinzig KP, D’Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueiredo HF, Murphy EK, Seeley RJ (2003) CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 23:6163–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehnle T, Rinaman L (2007) Progressive postnatal increases in Fos immunoreactivity in the forebrain and brainstem of rats after viscerosensory stimulation with lithium chloride. Am J Physiol Regul Integr Comp Physiol 292:R1212–R1223

    Article  CAS  PubMed  Google Scholar 

  • Kreisler AD, Davis EA, Rinaman L (2014) Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiol Behav 136:47–54

    Article  CAS  PubMed  Google Scholar 

  • Kuhn CM, Evoniuk G, Schanberg SM (1979) Loss of tissue sensitivity to growth hormone during maternal deprivation in rats. Life Sci 25:2090–2097

    Article  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Jessop DS (1997) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138:4445–4455

    Article  CAS  PubMed  Google Scholar 

  • Levine S (2001) Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat. Physiol Behav 73:255–260

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Caldji C, Sharma S, Plotsky PM, Meaney MJ (2000) Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinephrine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol 12:5–12

    Article  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S (2011) Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniscalco JW, Kreisler AD, Rinaman L (2013) Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Front Neurosci 6:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menétrey D, dePommery J (1991) Origins of spinal ascending pathways that reach central areas involved in visceroception and visceronociception in the rat. Eur J Neurosci 3:249–259

    Article  PubMed  Google Scholar 

  • Morales T, Hinuma S, Sawchenko PE (2000) Prolactin-releasing peptide is expressed in afferents to the endocrine hypothalamus, but not in neurosecretory neurones. J Neuroendocrinol 12:131–140

    Article  CAS  PubMed  Google Scholar 

  • Nelson EE, Alberts JR, Tian Y, Verbalis JG (1998) Oxytocin is elevated in plasma of 10-day-old rats following gastric distension. Dev Brain Res 111:301–303

    Article  CAS  Google Scholar 

  • Nillni EA (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 31:134–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkura S, Tanaka T, Nagatani S, Bucholtz DC, Tsukamura H, Maeda K, Foster DL (2000) Central, but not peripheral, glucose-sensing mechanisms mediate glucoprivic suppression of pulsatile luteinizing hormone secretion in the sheep. Endocrinology 141:4472–4480

    Article  CAS  PubMed  Google Scholar 

  • Oladehin A, Blatteis CM (1995) Lipopolysaccharide-induced fos expression in hypothalamic nuclei of neonatal rats. Neuroimmunomodulation 2:282–289

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M (1999) Interconnections between the neuroendocrine hypothalamus and the central autonomic system. Front Neuroendocrinol 20:270–295

    Article  CAS  PubMed  Google Scholar 

  • Plotsky P (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 121:924–930

    Article  CAS  PubMed  Google Scholar 

  • Raybould HE, Tache Y (1988) Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Phys 255:G242–G246

    CAS  Google Scholar 

  • Rinaman L (1999a) Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Phys 277:R582–R590

    CAS  Google Scholar 

  • Rinaman L (1999b) A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. Am J Phys 277:R1537–R1540

    CAS  Google Scholar 

  • Rinaman L (2001) Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 438:411–422

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L (2007) Visceral sensory inputs to the endocrine hypothalamus. Front Neuroendocrinol 28:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaman L (2010) Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 00556:02010

    Google Scholar 

  • Rinaman L, Koehnle TJ (2010) Development of central visceral circuits. In: Blumberg MS, Freeman JH, Robinson SR (eds) Oxford handbook of developmental behavioral neuroscience. Oxford University Press, New York, pp 298–321

    Google Scholar 

  • Rinaman L, Levitt P (1993) Establishment of vagal sensorimotor circuits during fetal development in rats. J Neurobiol 24:641–659

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L, Hoffman GE, Stricker EM, Verbalis JG (1994) Exogenous cholecystokinin activates cFos expression in medullary but not hypothalamic neurons in neonatal rats. Dev Brain Res 77:140–145

    Article  CAS  Google Scholar 

  • Rinaman L, Hoffman GE, Dohanics J, Le WW, Stricker EM, Verbalis JG (1995) Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 360:246–256

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L, Stricker EM, Hoffman GE, Verbalis JG (1997) Central c-fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. Neuroscience 79:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Robinson PH, Moran TH, Goldrich M, McHugh PR (1987) Development of cholecystokinin binding sites in the rat upper gastrointestinal tract. Am J Phys 252:G529–G534

    CAS  Google Scholar 

  • Robinson PH, Moran TH, McHugh PR (1988) Cholecystokinin inhibits independent ingestion in neonatal rats. Am J Phys 255:R14–R20

    CAS  Google Scholar 

  • Roman CW, Sloat SR, Palmiter RD (2017) A tale of two circuits: CCK NTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience 358:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Article  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    Article  CAS  PubMed  Google Scholar 

  • Shughrue PJ, Lane MV, Merchenthaler I (1996) Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology 137:5159–5162

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Sevigny CP, Guyenet PG (2002) Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 444:191–206

    Article  CAS  PubMed  Google Scholar 

  • Szawka RE, Poletini MO, Leite CM, Bernuci MP, Kalil B, Mendonca LB, Carolino RO, Helena CV, Bertram R, Franci CR, Anselmo-Franci JA (2013) Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology 154:363–374

    Article  CAS  PubMed  Google Scholar 

  • Thieblot L, Duchene-Marullaz P, Berthelay J (1957) Nouvelle preuve de la libération de principes posthypophysaires par l’excitation centripète du vague. Ann Endocrinol 18:651–653

    CAS  Google Scholar 

  • Ueta Y, Kannan H, Higuchi T, Negoro H, Yamashita H (1993) CCK-8 excites oxytocin-secreting neurons in the paraventricular nucleus in rats - possible involvement of noradrenergic pathway. Brain Res Bull 32:453–459

    Article  CAS  PubMed  Google Scholar 

  • Verbalis JG, McCann MJ, McHale CM, Stricker EM (1986) Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science 232:1417–1419

    Article  CAS  PubMed  Google Scholar 

  • Verbalis JG, Richardson DW, Stricker EM (1987) Vasopressin release in response to nausea-producing agents and cholecystokinin in monkeys. Am J Phys 252:R749–R753

    CAS  Google Scholar 

  • Verbalis JG, Stricker EM, Robinson AG, Hoffman GE (1991) Cholecystokinin activates cFos expression in hypothalamic oxytocin and corticotropin-releasing hormone neurons. J Neuroendocrinol 3:205–213

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Scribner VA, Cascio CS, Dallman MF (1991) The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time dependent and stress-specific fashion. Endocrinology 128:1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ, Morris MJ, Raineki C, Roth TL, Sullivan RM, Tache Y, Baram TZ (2017) Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20:421–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber BC, Manfredo HN, Rinaman L (2009) A potential gastrointestinal link between enhanced postnatal maternal care and reduced anxiety-like behavior in adolescent rats. Behav Neurosci 123:1178–1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Weller A, Corp ES, Tyrka A, Ritter RC, Brenner L, Gibbs J, Smith GP (1992) Trypsin inhibitor and maternal Reunion increase plasma cholecystokinin in neonatal rats. Peptides 13:939–941

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Iijima N, Kataoka Y, Hinuma S, Tanaka M, Ibata Y (2001) Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Dev Brain Res 128:101–111

    Article  CAS  Google Scholar 

  • Zheng H, Stornetta RL, Agassandian K, Rinaman L (2015) Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 220:3011–3022

    Article  CAS  PubMed  Google Scholar 

  • Zueco JA, Esquifino AI, Chowen JA, Alvarez E, Castrillon PO, Blazquez E (1999) Coexpression of glucagon-like peptide-1 (GLP-1) receptor, vasopressin, and oxytocin mRNAs in neurons of the rat hypothalamic supraoptic and paraventricular nuclei: effect of GLP-1(7-36)amide on vasopressin and oxytocin release. J Neurochem 72:10–16

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Rinaman .

Editor information

Editors and Affiliations

Key References

Key References

  • Bouret and Simerly (2007)—This review article summarizes evidence that the intrinsic hypothalamic circuits that integrate interoceptive signals (here, leptin signaling from visceral adipose tissue) undergo a significant amount of postnatal development in rodents. The authors present evidence that a natural postnatal surge in leptin promotes neural outgrowth and synapse formation within the neuroendocrine hypothalamus.

  • Coyle and Axelrod (1971)—One of the first publications providing evidence that noradrenergic inputs to the hypothalamus (which originate primarily from the hindbrain NTS and VLM) develop gradually during the first 3 weeks postnatal in rats.

  • Day et al. (1985)—This report provides compelling evidence in adult rats that noradrenergic projections from the hindbrain NTS and VLM to the neuroendocrine hypothalamus facilitate the activity of neuroendocrine neurons that control anterior pituitary hormone release.

  • Kamilaris et al. (1992)—A comprehensive set of experiments demonstrating that systemic CCK activates vagal sensory inputs to the NTS in rats, promoting activation of neuroendocrine CRH neurons at the apex of the HPA axis.

  • Rinaman and Koehnle (2010)—This book chapter summarizes what was known at the time regarding the anatomical and functional development of ascending visceral sensory pathways from the hindbrain NTS to the hypothalamus and other forebrain regions in rats.

  • Sawchenko and Swanson (1982)—A classic paper and required reading for anyone interested in understanding the anatomical organization of ascending hindbrain-hypothalamic circuits. The authors focus on inputs to the neuroendocrine hypothalamus.

  • Walker et al. (1991)—A comprehensive analysis of what was previously called the “stress nonresponsive period” of postnatal development. The authors conclude that the HPA axis is responsive to certain types of stimuli (including those that do not depend on ascending visceral sensory pathways to the hypothalamus), and effectively argue that this early developmental period should instead be called the “stress hyporesponsive period” (SHRP).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rinaman, L. (2020). Organization and Postnatal Development of Visceral Sensory Inputs to the Neuroendocrine Hypothalamus. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_13

Download citation

Publish with us

Policies and ethics