Skip to main content

Development of Limbic System Stress-Threat Circuitry

  • Chapter
  • First Online:

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

Abstract

How an animal responds to environmental stressors and threats is essential for survival. These responses are governed through an interconnected circuit in the brain dubbed the limbic system. Three main structures of the limbic system are the amygdala, bed nucleus of the stria terminalis (BNST), and hypothalamus. Together these structures define a central stress-threat circuit. This chapter describes the most up to date knowledge of how these structures function in regulating responses to stressors and how each of these structures is formed from embryonic development. This knowledge of the underlying biology of these regions is essential to design rational therapeutic approaches for conditions, such as post-traumatic stress disorder (PTSD) that are characterized by dysregulation of the stress-threat system. In this chapter, we also describe the critical unanswered questions in the field of stress-threat research and potential future research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • al-Shamma HA, De Vries GJ (1996) Neurogenesis of the sexually dimorphic vasopressin cells of the bed nucleus of the stria terminalis and amygdala of rats. J Neurobiol 29:91–98

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G (2018) Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 375(1):23–39

    Article  PubMed  CAS  Google Scholar 

  • Amir-Zilberstein L, Blechman J, Sztainberg Y, Norton WHJ, Reuveny A, Borodovsky N, Tahor M, Bonkowsky JL, Bally-Cuif L, Chen A et al (2012) Homeodomain protein otp and activity-dependent splicing modulate neuronal adaptation to stress. Neuron 73:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  • Armbruster B, Roth B (2005) Creation of designer biogenic amine receptors via directed molecular evolution. Neuropsychopharmacology 30:S265–S265

    Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batista-Brito R, Fishell G (2009) The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 87:81–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayer SA (1987) Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis. J Comp Neurol 265:47–64

    Article  CAS  PubMed  Google Scholar 

  • Bedont JL, Newman EA, Blackshaw S (2015) Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol 4:445–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of Channelrhodopsin into a light-activated Chloride Channel. Science 3:420–424

    Article  CAS  Google Scholar 

  • Bian X (2013) Physiological and morphological characterization of GABAergic neurons in the medial amygdala. Brain Res 1509:8–19

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Yanagawa Y, Chen WR, Luo M (2008) Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. J Neurophysiol 99:77–86

    Article  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brechbühl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F et al (2013) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 110:4762–4767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JL (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bupesh M, Legaz I, Abellán A, Medina L (2011) Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 519:1505–1525

    Article  PubMed  Google Scholar 

  • Canteras NS, Swanson LW (1992) The dorsal premamillary nucleus: an unusual component of the mamillary body. Proc Natl Acad Sci U S A 89:10089–10093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1992) Projections of the ventral premamillary nucleus. J Comp Neurol 324:195–212

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris leucoagglutinin study in the rat. J Comp Neurol 348:41–79

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson L (1995) Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 360:213–245

    Article  CAS  PubMed  Google Scholar 

  • Carney RSE, Mangin J-M, Hayes L, Mansfield K, Sousa VH, Fishell G, Machold RP, Ahn S, Gallo V, Corbin JG (2010) Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Develop. 5:14

    Article  CAS  Google Scholar 

  • Carter M, Shieh JC (2010) Guide to research techniques in neuroscience. Elsevier, Burlington, MA, pp 1–375

    Book  Google Scholar 

  • Cezario AF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2008) Hypothalamic sites responding to predator threats – the role of the dorsal premamillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur J Neurosci 28:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Choi GB, Dong H-W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Swanson LW, Anderson DJ (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coward P, Wada HG, Falk MS, Chan SD, Meng F, Akil H, Conklin BR (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 95:352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocas LA, Miyoshi G, Carney RS, Sousa VH, Hirata T, Jones KR, Fishell G, Huntsman MM, Corbin JG (2009) Emx1-lineage progenitors differentially contribute to neural diversity in the striatum and amygdala. J Neurosci 29(50):15933–15946. https://doi.org/10.1523/JNEUROSCI.2525-09.2009. PubMed PMID: 20016109; PubMed Central PMCID: PMC3679174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35:105–135

    Article  PubMed  Google Scholar 

  • Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2004) Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J Comp Neurol 471(4):396–433. Erratum in: J Comp Neurol. 2004 Jul 5;474(4):603-4. PubMed PMID: 15022261

    Article  PubMed  Google Scholar 

  • Ericson J, Muhr J, Jessell TM, Edlund T (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int J Dev Biol 39:809–816

    CAS  PubMed  Google Scholar 

  • Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferran JL, Puelles L, Rubenstein JLR (2015) Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front Neuroanat 9:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR et al (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci U S A 108:11235–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-López M, Abellán A, Legaz I, Rubenstein JLR, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 506:46–74

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, López-Mascaraque L, Simeone A, De Carlos JA (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13:680–689

    Article  PubMed  CAS  Google Scholar 

  • Gelman D, Griveau A, Dehorter N, Teissier A, Varela C, Pla R, Pierani A, Marín O (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31:16570–16580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Canteras NS, Burns G, Swanson LW (2005) Projections from the subfornical region of the lateral hypothalamic area. J Comp Neurol 493:412–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13:651–658

    Article  CAS  PubMed  Google Scholar 

  • Guirado S, Real MA, Dávila JC (2008) Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse. Brain Res Bull 75:214–217

    Article  CAS  PubMed  Google Scholar 

  • Han TM, De Vries GJ (1999) Neurogenesis of galanin cells in the bed nucleus of the stria terminalis and centromedial amygdala in rats: a model for sexual differentiation of neuronal phenotype. J Neurobiol 38:491–498

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa K, Hashikawa Y, Falkner A, Lin D (2016) The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 38:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashikawa K, Hashikawa Y, Lischinsky J, Lin D (2018) The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet TIG 34:755–776

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P, Nagel G (2013) From Channelrhodopsins to Optogenetics. EMBO Mol Med 5:173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata T, Li P, Lanuza GM, Cocas LA, Huntsman MM, Corbin JG (2009) Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nat Neurosci 12:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutton LA, Gu G, Simerly RB (1998) Development of a sexually dimorphic projection from the bed nuclei of the stria terminalis to the anteroventral periventricular nucleus in the rat. J Neurosci 18:3003–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavarzi S, Sullivan RKP, Ianno DJ, Sah P (2014) Functional properties and projections of neurons in the medial amygdala. J Neurosci 34:8699–8715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunwar PS, Zelikowsky M, Remedios R, Cai H, Yilmaz M, Meister M, Anderson DJ (2015) Ventromedial hypothalamic neurons control a defensive emotion state. elife 4:e06633

    Article  PubMed Central  Google Scholar 

  • Kanatani S, Honda T, Aramaki M, Hayashi K, Kubo K, Ishida M, Tanaka DH, Kawauchi T, Sekine K, Kusuzawa S, Kawasaki T, Hirata T, Tabata H, Uhlén P, Nakajima K (2015) The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. Proc Natl Acad Sci U S A 112(36):E4985–E4994. https://doi.org/10.1073/pnas.1420701112. Epub 2015 Aug 24. PubMed PMID: 26305926; PubMed Central PMCID: PMC4568674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuerbitz J, Arnett M, Ehrman S, Williams MT, Vorhees CV, Fisher SE, Garratt AN, Muglia LJ, Waclaw RR, Campbell K (2018) Loss of Intercalated Cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression, and social interaction phenotypes. J Neurosci 38(5):1160–1177. https://doi.org/10.1523/JNEUROSCI.1412-17.2017. Epub 2017 Dec 18. PubMed PMID: 29255003; PubMed Central PMCID: PMC5792476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Dulac C (2018) Neural coding of sex-specific social information in the mouse brain. Curr Opin Neurobiol 53:120–130

    Article  CAS  PubMed  Google Scholar 

  • Liberles SD (2015) Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 34C:1–7

    Article  CAS  Google Scholar 

  • Lischinsky JE, Sokolowski K, Li P, Esumi S, Kamal Y, Goodrich M, Oboti L, Hammond TR, Krishnamoorthy M, Feldman D et al (2017) Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues. elife 6:e21012

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57(5):634–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LQ, Callaway EM, Svoboda K (2018) Genetic dissection of neural circuits: a decade of Progress. Neuron 98:256–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsaki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, Ramirez MH, Hu X et al (2019) Ultrapotent Chemogenetics for research and potential clinical applications. Science 364(6436):eaav5282. https://doi.org/10.1126/science.aav5282. [Epub ahead of print]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2011) Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 172:314–328

    Article  CAS  PubMed  Google Scholar 

  • Matise MP, Wang H (2011) Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol 97:75–117

    Article  CAS  PubMed  Google Scholar 

  • McGregor IS, Hargreaves GA, Apfelbach R, Hunt GE (2004) Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J Neurosci 24:4134–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta SC, Goto M, Gouveia FV, Baldo MV, Canteras NS, Swanson LW (2009) Dissecting the brain's fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc Natl Acad Sci U S A 106:4870–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Neve RL, Neve KA, Nestler EJ, Carlezon WA (2005) Use of herpes virus amplicon vectors to study brain disorders. BioTechniques 39:381–391

    Article  CAS  PubMed  Google Scholar 

  • Nouri N, Awatramani R (2017) A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Dev Camb Engl 144:916–927

    CAS  Google Scholar 

  • Pérez-Gómez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD et al (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1340–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  CAS  Google Scholar 

  • Petrovich GD, Risold PY, Swanson LW (1996) Organization of the projections of the basomedial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 374:387–420

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Morales-Delgado N, Merchán P, Castro-Robles B, Martínez-de-la-Torre M, Díaz C, Ferran JL (2016) Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Brain Struct Funct 221(6):3027–3065. https://doi.org/10.1007/s00429-015-1086-8. Epub 2015 Jul 19. PubMed PMID: 26189100; PubMed Central PMCID: PMC4920861

    Article  CAS  PubMed  Google Scholar 

  • Real MA, Heredia R, Labrador MDC, Dávila JC, Guirado S (2009) Expression of somatostatin and neuropeptide Y in the embryonic, postnatal, and adult mouse amygdalar complex. J Comp Neurol 513:335–348

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris leucoagglutinin study in the rat. J Comp Neurol 348:1–40

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Reig N, Andres B, Lamonerie T, Theil T, Fairén A, Studer M (2018) The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala. Brain Struct Funct 223:3279–3295

    Article  CAS  PubMed  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:306–313

    Google Scholar 

  • Shimada M, Nakamura T (1973) Time of neuron origin in mouse hypothalamic nuclei. Exp Neurol 41:163–173

    Article  CAS  PubMed  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva BA, Mattucci C, Krzywkowski P, Murana E, Illarionova A, Grinevich V, Canteras NS, Ragozzino D, Gross CT (2013) Independent hypothalamic circuits for social and predator fear. Nat Neurosci 16:1731–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski K, Corbin JG (2012) Wired for behaviors: from development to function of innate limbic system circuitry. Front Mol Neurosci 5:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolowski K, Esumi S, Hirata T, Kamal Y, Tran T, Lam A, Oboti L, Brighthaupt S-C, Zaghlula M, Martinez J et al (2015) Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolowski K, Tran T, Esumi S, Kamal Y, Oboti L, Lischinsky J, Goodrich M, Lam A, Carter M, Nakagawa Y et al (2016) Molecular and behavioral profiling of Dbx1-derived neurons in the arcuate, lateral and ventromedial hypothalamic nuclei. Neural Develop 11:12

    Article  CAS  Google Scholar 

  • Soma M, Aizawa H, Ito Y, Maekawa M, Osumi N, Nakahira E, Okamoto H, Tanaka K, Yuasa S (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513:113–128

    Article  CAS  PubMed  Google Scholar 

  • Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus-->midbrain pathway for feeding behavior. Neuron 82:797–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  CAS  PubMed  Google Scholar 

  • Sullivan GM, Apergis J, Bush DE, Johnson LR, Hou M, LeDoux JE (2004) Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128:7–14

    Article  CAS  PubMed  Google Scholar 

  • Takahashi LK (2014) Olfactory systems and neural circuits that modulate predator odor fear. Front Behav Neurosci 8:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Tervo DGR, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res Brain Res Rev 27:89–118

    Article  CAS  PubMed  Google Scholar 

  • Touzot A, Ruiz-Reig N, Vitalis T, Studer M (2016) Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Dev. Camb. Engl. 143:1753–1765

    CAS  Google Scholar 

  • Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Rubenstein JL, Tsai SY, Tsai MJ (2012) COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development 139(9):1630–1639. https://doi.org/10.1242/dev.075564. PubMed PMID: 22492355; PubMed Central PMCID: PMC3317968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, Sassano FM, Huang XP, Zhu H, Urban DJ, White KL, Rittiner JE, Crowley NA, Pleil KE, Mazzone CM, Mosier PD, Song J, Kash TL, Malanga CJ, Krashes MJ, Roth BL (2015) A new DREADD facilitates the multiplexed Chemogenetic interrogation of behavior. Neuron 86:936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vucurovic K, Gallopin T, Ferezou I, Rancillac A, Chameau P, van Hooft JA, Geoffroy H, Monyer H, Rossier J, Vitalis T (2010) Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb Cortex N Y N 1991(20):2333–2347

    Article  Google Scholar 

  • Wang L, Chen IZ, Lin D (2015) Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85:1344–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Talwar V, Osakada T, Kuang A, Guo Z, Yamaguchi T, Lin D (2019) Hypothalamic control of conspecific self-defense. Cell Rep 26:1747–1758.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes AR, Oliveira RF, Levkowitz G (2017) Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. elife 6:e22170

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu YE, Pan L, Zuo Y, Li X, Hong W (2017) Detecting activated cell populations using single-cell RNA-Seq. Neuron 96:313–329.e6

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Xie Y, Dorsky RI (2017) Development of the hypothalamus: conservation, modification and innovation. Dev Camb Engl 144:1588–1599

    CAS  Google Scholar 

  • Xu Q, de la Cruz E, Anderson SA (2003) Cortical interneuron fate determination: diverse sources for distinct subtypes? Cereb Cortex N Y N 1991(13):670–676

    Article  Google Scholar 

  • Yang CF, Shah NM (2014) Representing sex in the brain, one module at a time. Neuron 82:261–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Szabó N, Ma J, Luo L, Zhou X, Alvarez-Bolado G (2008) Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci 28:1941–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Aryal DK, Olsen RH, Urban DJ, Swearingen A, Forbes S, Roth BL, Hochgeschwender U (2016) Cre-dependent DREADD (designer receptors exclusively activated by designer drugs) mice. Genesis 54:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua G. Corbin .

Editor information

Editors and Affiliations

Key References

Key References

  • Choi et al. (2005)—This article identifies subcircuits of the medial amygdala that are genetically identifiable by expression of the LIM-family of transcription factors and posits that these subcircuits control different innate behaviors.

  • Gross and Canteras (2012)—This review nicely describes the brain circuits controlling innate and learned fear.

  • Hirata et al. (2009)—Using genetic tracing techniques this study revealed that there are progenitor zones in the developing telencephalon that are dedicated to generate neuronal diversity in the amygdala.

  • Hashikawa et al. (2016)—This review eloquently describes the olfactory to deeper brain circuits that translate odor information to innate behavioral output.

  • Lebow and Chen (2016)—This review provides an excellent summary the anatomy, function and role of the bed nucleus of the stria terminalis in psychiatric disorders.

  • Luo, et al. (2018)—This review provides an very comprehensive description of the state of the art tools of modern neuroscience.

  • Motta et al. (2009)—Using a combination of approaches, this study revealed that there are distinct hypothalamic circuits for processing different fear behaviors.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canteras, N.S., Lin, D., Corbin, J.G. (2020). Development of Limbic System Stress-Threat Circuitry. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_12

Download citation

Publish with us

Policies and ethics