Skip to main content

Development of the Neuroendocrine Hypothalamus

  • Chapter
  • First Online:
Developmental Neuroendocrinology

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

Abstract

The neuroendocrine hypothalamus consists of neurosecretory neurons and specialized glia of the median eminence and posterior pituitary. Neurons and glia act together to support and regulate reciprocal brain–body communications that enable the hypothalamus to anticipate and adapt to changing physiological conditions. Here we summarize recent studies in model organisms that show how an embryonic program of hypothalamic development unfolds in a manner that underlies adult function. Fate-mapping studies in chick show that much of the basal hypothalamus is built from a multipotent Fgf10(+) progenitor population whose mode of growth in four dimensions suggests a new model for hypothalamic development that we term the ‘Anisotropic growth’ model. Conditional genetic analyses and pharmacological interventions in mouse, zebrafish, and chick suggest that a conserved molecular mechanism may mediate anisotropic growth and establish the basal hypothalamus. A handful of conserved signalling factors and transcription factors (TFs) direct the progressive development of Fgf10(+) progenitors to hypothalamic progenitors, hypothalamic neurons, and then infundibular progenitors of the median eminence and posterior pituitary in a program where space and time are intrinsically linked. These studies reveal additionally that Fgf10(+) cell populations are maintained throughout life and are vital to the long-term building, maintenance, and function of the adult hypothalamo–pituitary axis. We speculate on whether the embryonic Fgf10(+) progenitor population harbours a hypothalamic stem cell and discuss the implications for the ability of the hypothalamus to adapt to changing physiological conditions on different time scales through life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3V:

3rd ventricle

AP:

Anterior Pituitary (aka Adenohypophysis)

ARC:

Arcuate nucleus

bHLH:

Basic helix-loop-helix

BMP:

Bone morphogenetic protein

CRH:

Corticotropin releasing hormone

DA:

Dopamine

DMN:

Dorsomedial nucleus

Fgf:

Fibroblast growth factor

GHRH:

Growth hormone releasing hormone

HD:

Homeodomain

MB:

Mammillary Body

ME:

Median Eminence

OXT:

Oxytocin

PeVN:

Periventricular nucleus

PP:

Posterior pituitary (aka neurohypophysis)

PVN:

Paraventricular nucleus

RDVM:

Rostral diencephalic ventral midline

Rx:

Retina and anterior neural fold homeobox

SCN:

Suprachiasmatic nucleus

Shh:

Sonic hedgehog

SON:

Supraoptic nucleus

SST:

Somatostatin

TMN:

Tubero-mammillary nucleus

TRH:

Thyroid releasing hormone

VMN:

Ventromedial nucleus

VZ:

Ventricular zone

References

  • Alvarez-Bolado G (2018) Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. https://doi.org/10.1007/s00441-018-2859-1

  • Alvarez-Bolado G, Paul FA, Blaess S (2012) Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 7:4. https://doi.org/10.1186/1749-8104-7-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Anbalagan S, Gordon L, Blechman J, Matsuoka RL, Rajamannar P, Wircer E, Biran J, Reuveny A, Leshkowitz D, Stainier DYR, Levkowitz G (2018) Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev Cell. https://doi.org/10.1016/j.devcel.2018.10.017

  • Bedont JL, Blackshaw S (2015) Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci 9:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedont JL, Newman EA, Blackshaw S (2015) Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/wdev.187

  • Brinkmeier ML, Potok MA, Davis SW, Camper SA (2007) TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol 311:396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbridge S, Stewart I, Placzek M (2016) Development of the neuroendocrine hypothalamus. Compr Physiol 6(2):623–643

    Article  PubMed  Google Scholar 

  • Campbell JN, Macosko EZ, Fenselau H et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, Hahn H, Andoniadou CL, Martinez-Barbera JP (2017) Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 144(18):3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18(13):3227–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clasadonte J, Prevot V (2018) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14(1):25–44. https://doi.org/10.1038/nrendo.2017.124

    Article  CAS  PubMed  Google Scholar 

  • Corman TS, Bergendahl SE, Epstein DJ (2018) Distinct temporal requirements for Sonic hedgehog signaling in development of the tuberal hypothalamus. Development 145(21). https://doi.org/10.1242/dev.167379

  • Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quali-chick chimeras. Dev Bioll 110:422–439

    Article  CAS  Google Scholar 

  • Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA (2013) Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 106:1–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS (2007) Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol 5:e78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebling FJP, Lewis JE (2018) Tanycytes and hypothalamic control of energy balance. Glia 66(6):1176–1184

    Article  PubMed  Google Scholar 

  • Fu T, Towers M, Placzek MA (2017) Fgf10+ progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144(18):3278–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu T, Pearson C, Towers M, Placzek, MA (2019) Development of the basal hypothalamus through anisotropic growth. J Neuroendocrinol 31(5):e12727

    Google Scholar 

  • Gizowski C, Zaelzer C, Bourque CW (2016) Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537:685–688

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Hojo M, Ando M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S (2015) Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res 1625:206–217

    Article  CAS  PubMed  Google Scholar 

  • Gutnick A, Levkowitz G (2012) The neurohypophysis: fishing for new insights. J Neuroendocrinol 24(6):973–974

    Article  CAS  PubMed  Google Scholar 

  • Gutnick A, Blechman J, Kaslin J, Herwig L, Belting HG, Affolter M, Bonkowsky JL, Levkowitz G (2011) The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary. Dev Cell 21:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10(+) tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33(14):6170–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong Y, El-Jaick K, Roessler E, Muenke M, Epstein DJ (2006) A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133(4):761–772

    Article  CAS  PubMed  Google Scholar 

  • Kapsimali M, Caneparo L, Houart C, Wilson SW (2004) Inhibition of Wnt/Axin/beta-catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development 131:5923–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Washington PW, Wan ZQ, Lin S, Sun C, Jiang L, Blackshaw S (2019) Single cell RNA-Seq analysis identifies molecular mechanisms controlling hypothalamic patterning and differentiation. bioRxiv. https://doi.org/10.1101/657148

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    Article  CAS  PubMed  Google Scholar 

  • Lewis JE, Ebling FJ (2017) Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front Neurol 10:8–79

    Google Scholar 

  • Liu F, Pogoda HM, Pearson CA, Ohyama K, Lohr H, Hammerschmidt M, Placzek M (2013) Direct and indirect roles of Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypothalamic neurohypophysis. Development 140:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M (2006) Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 11:873–885

    Article  CAS  PubMed  Google Scholar 

  • Manoli M, Driever W (2014) nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Front Neuroanat 8:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsters CM, Rosin JM, Thornton HF, Aslanpour S, Klenin N, Wilkinson G, Schuurmans C, Pittman QJ, Kurrasch DM (2016) Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev 11(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B, Rosenbauer J, Stegmaier J, Mikut R, Özbek S, Nienhaus GU, Schug A, Virshup DM, Scholpp S (2018) Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. Elife 7. https://doi.org/10.7554/eLife.36953

  • Miranda-Angulo AL, Byerly MS, Mesa J, Wang H, Blackshaw S (2014) Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol 522:876–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulac C, Zhuang X (2018) Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362(6416). https://doi.org/10.1126/science.aau5324

  • Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi É, Darras VM, Fekete C, Gereben B (2016) Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus. Endocrinology 157(3):1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Mortensen AH, Schade V, Lamonerie T, Camper SA (2015) Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet 24:939–953

    Article  CAS  PubMed  Google Scholar 

  • Muthu V, Eachus H, Ellis P, Brown S, Placzek M (2016) Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus. Development (14):2651–2663. https://doi.org/10.1242/dev.138305

  • Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S (2018a) Foxd1 is required for terminal differentiaiton of anterior hypothalamic neuronal subtypes. Dev Biol 439(2):102–111. https://doi.org/10.1016/j.ydbio.2018.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA, Wu D, Taketo MM, Zhang J, Blackshaw S (2018b) Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev Biol 442(2):236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  • Orquera DP, Nasif S, Low MJ, Rubinstein M, de Souza FSJ (2016) Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev Biol 416(1):212–224. https://doi.org/10.1016/j.ydbio.2016.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patten I, Kulesa P, Shen MM, Fraser S, Placzek M (2003) Distinct modes of floor plate induction in the chick embryo. Development 130:4809–4821

    Article  CAS  PubMed  Google Scholar 

  • Pearson CA, Ohyama K, Manning L, Aghamohammadzadeh S, Sang H, Placzek M (2011) FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development. Development 138:2613–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6:230–240

    Article  CAS  PubMed  Google Scholar 

  • Placzek M, Briscoe J (2018) Sonic hedgehog in vertebrate neural tube development. Int J Dev Biol 62(1–2–3):225–234. https://doi.org/10.1387/ijdb.170293jb

    Article  CAS  PubMed  Google Scholar 

  • Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, Camper SA (2008) WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 237:1006–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) Mouse nervous system. Academic Press, San Diego, CA, pp 221–312

    Chapter  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trend Neurosci 36:570–578

    Article  CAS  PubMed  Google Scholar 

  • Ratie L, Ware M, Barloy-Hubler F, Rome H, Gicquel I, Dubourg C, David V, Dupe V (2013) Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev 8:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratié L, Ware M, Jagline H, David V, Dupé V (2014) Dynamic expression of Notch-dependent neurogenic markers in the chick embryonic nervous system. Front Neuroanat 8:158

    PubMed  PubMed Central  Google Scholar 

  • Rizotti K, Lovell-Badge R (2017) Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol Cell Endocrinol 445:7–13

    Article  CAS  Google Scholar 

  • Rizzoti K (2015) Genetic regulation of murine pituitary development. J Mol Endocrinol 54(2):R55–R73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049. https://doi.org/10.1038/ncomms3049

    Article  CAS  PubMed  Google Scholar 

  • Romanov RA, Zeisel A, Bakker J et al (2016) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20:176–188

    Article  PubMed  CAS  Google Scholar 

  • Salvatierra J, Lee DA, Zibetti C, Duran-Moreno M, Yoo S, Newman EA, Wang H, Bedont JL, de Melo J, Miranda-Angulo AL, Gil-Perotin S, Garcia-Verdugo JM, Blackshaw S (2014) The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci 34:16809–16820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samms RJ, Lewis JE, Lory A, Fowler MJ, Cooper S, Warner A, Emmerson P, Adams AC, Luckett JC, Perkins AC, Wilson D, Barrett P, Tsintzas K, Ebling FJ (2015) Antibody-mediated inhibition of the FGFR1c isoform induces a catabolic lean state in siberian hamsters. Curr Biol 25(22):2997–3003

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Arrones L, Ferrán JL, Rodríguez-Gallardo L, Puelles L (2009) Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 335:43–65

    Article  PubMed  CAS  Google Scholar 

  • Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D, Bergman RN, Nguyen HT, Dorfman MD, Lantier L, Wasserman DH, Mirzadeh Z, Unterman TG, Morton GJ, Schwartz MW (2016) Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med 22(7):800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth A, Culverwell J, Walkowicz M, Toro S, Rick JM, Neuhauss SC, Varga ZM, Karlstrom RO (2006) belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development 133(4):725–735

    Article  CAS  PubMed  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson LW (1992) Brain maps: structure of the rat brain. Elsevier, New York

    Google Scholar 

  • Szabó NE, Zhao T, Cankaya M, Theil T, Zhou X, Alvarez-Bolado G (2009) Role of neuroepithelial Sonic hedgehog in hypothalamic patterning. J Neurosci 29(21):6989–7002. https://doi.org/10.1523/JNEUROSCI.1089-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Trowe MO, Zhao L, Weiss AC, Christoffels V, Epstein DJ, Kispert A (2013) Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 140:2299–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudel E, Bourque CW (2010) Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat Neurosci 13:467–474

    Article  CAS  PubMed  Google Scholar 

  • Tsai PS, Brooks LR, Rochester JR, Kavanaugh SI, Chung WC (2011) Fibroblast growth factor signaling in the developing neuroendocrine hypothalamus. Front Neuroendocrinol 32:95–107

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kopinke D, Lin J, McPherson AD, Duncan RN, Otsuna H, Moro E, Hoshijima K, Grunwald DJ, Argenton F, Chien CB, Murtaugh LC, Dorsky RI (2012) Wnt signaling regulates postembryonic hypothalamic progenitor differentiation. Dev Cell 23:624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Fan CM (2007) Allocation of paraventricular and supraoptic neurons requires Sim1 function: a role for a Sim1 downstream gene PlexinC1. Mol Endocrinol 21(5):1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Mathers PH, Jamrich M (2000) Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis 28:135–142

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Szabo N, Ma J, Luo L, Zhou X, Alvarez-Bolado G (2008) Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci 28:1941–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Mailloux CM, Hermesz E, Palkóvits M, Westphal H (2010) A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 337(2):313–323. https://doi.org/10.1016/j.ydbio.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ (2012) Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell 22:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marysia Placzek .

Editor information

Editors and Affiliations

Key References

Key References

  • Alvarez-Bolado et al. (2012)—Lineage-tracing of a subset of Shh(+) neuroepithelial progenitors shows that they contribute to the tuberal and mammillary hypothalamus.

  • Carreno et al. (2017)—Genetic studies in the mouse reveal the integrated development of the ventral hypothalamus (including the infundibulum and Shh(+) neuroepithelial progenitors) and the adenohypophysis.

  • Chen et al. (2017)—A large scale single cell RNA seq analysis of the adult mouse hypothalamus confirms that neuroendocrine neurohormones/neurotransmitters are expressed in heterogeneous cell types.

  • Corman et al. (2018)—Sophisticated mouse studies, including analyses of conditional knock-out and reporter lines, show that tuberal neurons derive from both Shh-expressing and Shh-responsive progenitors.

  • Fu et al. (2017)—Fate-mapping and pharmacological studies in the early chick provides evidence for the anisotropic growth model of hypothalamic development.

  • Haan et al. (2013)—Evidence for de novo adult neurogenesis from Fgf10(+) tanycytes; together with Fu et al. (2017) and Robins et al. (2013), raises possibility that an Fgf10(+) population is important for building hypothalamic neurons throughout life.

  • Kim et al. (2019)—A new study that sets a benchmark for molecular analysis of the developing hypothalamus. Single cell RNA seq analyses of the hypothalamus at different time points in embryogenesis and postnatal life provide evidence for the early specification of key hypothalamic neuronal subsets. Comparison of wild type and mutant mice provides evidence that the hypothalamus is a diencephalic-derived structure.

  • Manning et al. (2006)—A study in the chick embryo that provided an understanding of the co-ordination of pattern and proliferation of ventral hypothalamic progenitor cells. Re-interpretation of this paper, in light of the anisotropic growth shown in Fu et al. (2019), suggests that the cells that express Tbx2/BMP are bHyp cells, and the Emx2+ cells are mammillary progenitors.

  • Muthu et al. (2016)—Anisotropic growth of anterior hypothalamus in zebrafish; absence of growth leads to failure of differentiation of both ‘anterior’ and ‘tuberal’ neuroendocrine neurons.

  • Newman et al. (2018a)—Sophisticated conditional knock-out and reporter lines show hypothalamus is of diencephalic origin.

  • Orquera et al. (2016)—Evidence for conserved mechanism of anterior progenitor growth and differentiation, via a Shh-Rax pathway.

  • Robins et al. (2013)—Analysis of adult mouse shows that Fgf10(+) stem/progenitor cells exist as tanycytes that line the ventricle; with Fu et al. (2019) and Haan et al. (2013), suggests that Fgf10(+) stem/progenitor cells are retained through life.

  • Shimogori et al. (2010)—A large-scale screen and in situ analysis identifies many hypothalamic progenitor domains; conditional knock-out of subsets of Shh(+) neuroepithelial progenitors shows importance in anterior/tuberal growth and neurogenesis.

  • Szabó et al. (2009)—Lineage-tracing of a subset of Shh(+) RDVM cells shows contribution to tuberal and mammillary hypothalamus.

  • Tessmar-Raible et al. (2007)—Conservation of neuroendocrine cells and conservation of key molecules.

  • Trowe et al. (2013)—Analysis of mouse, analysing control of Shh expression in RSVM cells. With Manning et al. (2006), suggests a mechanism for resolution of bHyp cells into Shh(+) and Shh(−) domains.

  • Xu et al. (2007)—Proof-of-principle that differentiating hypothalamic neurons undergo tangential migration.

  • Zhao et al. (2008)—Proof-of-principle that progenitors other than bHyp cells also undergo tangential migration.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Placzek, M., Fu, T., Towers, M. (2020). Development of the Neuroendocrine Hypothalamus. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_1

Download citation

Publish with us

Policies and ethics