Skip to main content

Proton-Responsive Nanomaterials for Fuel Cells

  • Chapter
  • First Online:
Responsive Nanomaterials for Sustainable Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 297))

  • 568 Accesses

Abstract

Proton-conducting oxides receive more and more attention in the current world because of its wide applications in renewable and sustainable devices. Among all these applications, the use of proton-conducting oxide for fuel cells is becoming quite a hot topic as it avoids the problems for traditional fuel cells using oxide electrolyte and also lowers the working temperature of fuel cells, making them possible for practical applications. With the framework of proton-conducting solid oxide fuel cells, the utilization of nanomaterials now playing an essential part in the whole community, and this chapter will briefly summarize the nanomaterials for protonic oxide fuel cells that are also known as proton-conducting solid oxide fuel cells (SOFCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen-production. Solid State Ionics 3–4, 359–363 (1981)

    Article  Google Scholar 

  2. T. Norby, M. Wideroe, R. Glockner, Y. Larring, Hydrogen in oxides. Dalton Trans. 19, 3012–3018 (2004)

    Article  Google Scholar 

  3. K.D. Kreuer, Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003)

    Article  CAS  Google Scholar 

  4. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    Article  CAS  Google Scholar 

  5. H.K. Dai, H.N. Kou, H.Q. Wang, L. Bi, Electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: a mini-review. Electrochem. Commun. 96, 11–15 (2018)

    Article  CAS  Google Scholar 

  6. H. Iwahara, H. Uchida, K. Ono, K. Ogaki, Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135(2), 529–533 (1988)

    Article  CAS  Google Scholar 

  7. R. Haugsrud, T. Norby, Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5(3), 193–196 (2006)

    Article  CAS  Google Scholar 

  8. E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39(11), 4355–4369 (2010)

    Article  CAS  Google Scholar 

  9. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012)

    Article  CAS  Google Scholar 

  10. S.M. Haile, G. Staneff, K.H. Ryu, Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. J. Mater. Sci. 36(5), 1149–1160 (2001)

    Article  CAS  Google Scholar 

  11. A. D’Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia, E. Traversa, Design of BaZr0.8Y0.2O3 protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8(1), 69–76 (2008)

    Article  CAS  Google Scholar 

  12. Z.Q. Sun, E. Fabbri, L. Bi, E. Traversa, Lowering grain boundary resistance of BaZr0.8Y0.2O3 with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys. Chem. Chem. Phys. 13(17), 7692–7700 (2011)

    Article  CAS  Google Scholar 

  13. D. Pergolesi, E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat. Mater. 9(10), 846–852 (2010)

    Article  CAS  Google Scholar 

  14. D. Pergolesi, E. Fabbri, E. Traversa, Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12(7), 977–980 (2010)

    Article  CAS  Google Scholar 

  15. E. Fabbri, D. Pergolesi, A. D’Epifanio, E. Di Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy Environ. Sci. 1(3), 355–359 (2008)

    Article  CAS  Google Scholar 

  16. K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.K. Kim, J.H. Lee, J.W. Son, J.H. Shim, Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8, 14553 (2017)

    Article  CAS  Google Scholar 

  17. E.E. Helgee, A. Lindman, G. Wahnstrom, Origin of space charge in grain boundaries of proton-conducting BaZrO3. Fuel Cells 13(1), 19–28 (2013)

    Article  CAS  Google Scholar 

  18. M. Shirpour, R. Merkle, J. Maier, Space charge depletion in grain boundaries of BaZrO3 proton conductors. Solid State Ionics 225, 304–307 (2012)

    Article  CAS  Google Scholar 

  19. M. Shirpour, B. Rahmati, W. Sigle, P.A. van Aken, R. Merkle, J. Maier, Dopant segregation and space charge effects in proton-conducting BaZrO3 perovskites. J. Phys. Chem. C 116(3), 2453–2461 (2012)

    Article  CAS  Google Scholar 

  20. M. Shirpour, R. Merkle, J. Maier, Evidence for space charge effects in Y-doped BaZrO3 from reduction experiments. Solid State Ionics 216, 1–5 (2012)

    Article  CAS  Google Scholar 

  21. J.H. Tong, A. Subramaniyan, H. Guthrey, D. Clark, B.P. Gorman, R. O’Hayre, Electrical conductivities of nano ionic composite based on yttrium-doped barium zirconate and palladium metal. Solid State Ionics 211, 26–33 (2012)

    Article  CAS  Google Scholar 

  22. V. Esposito, E. Traversa, Design of electroceramics for solid oxides fuel cell applications: playing with ceria. J. Am. Ceram. Soc. 91(4), 1037–1051 (2008)

    Article  CAS  Google Scholar 

  23. L. Bi, E. Traversa, Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J. Mater. Res. 29(1), 1–15 (2014)

    Article  CAS  Google Scholar 

  24. Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21(13), 2755–2762 (2009)

    Article  CAS  Google Scholar 

  25. E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, E. Traversa, Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater. 21(1), 158–166 (2011)

    Article  CAS  Google Scholar 

  26. H.L. Dai, Proton conducting solid oxide fuel cells with chemically stable BaZr0.75Y0.2Pr0.05O3 electrolyte. Ceramics International 43(9), 7362–7365 (2017)

    Article  CAS  Google Scholar 

  27. S.P. Shafi, L. Bi, S. Boulfrad, E. Traversa, Y and Ni co-doped BaZrO3 as a proton-conducting solid oxide fuel cell electrolyte exhibiting superior power performance. J. Electrochem. Soc. 162(14), F1498–F1503 (2015)

    Article  CAS  Google Scholar 

  28. C.K. Ng, S. Ramesh, C.Y. Tan, A. Muchtar, M.R. Somalu, Microwave sintering of ceria-doped scandia stabilized zirconia as electrolyte for solid oxide fuel cell. Int. J. Hydrogen Energy 41(32), 14184–14190 (2016)

    Article  CAS  Google Scholar 

  29. B. Wang, X.H. Liu, L. Bi, X.S. Zhao, Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells. J. Power Sources 412, 664–669 (2019)

    Article  CAS  Google Scholar 

  30. L. Bi, E. Fabbri, Z.Q. Sun, E. Traversa, BaZr0.8Y0.2O3-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method. J. Electrochem. Soc. 158(7), B797–B803 (2011)

    Article  CAS  Google Scholar 

  31. L. Bi, E. Fabbri, Z.Q. Sun, E. Traversa, Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3 electrolyte films for anode-supported solid oxide fuel cells. Energy Environ. Sci. 4(4), 1352–1357 (2011)

    Article  CAS  Google Scholar 

  32. L. Chevallier, M. Zunic, V. Esposito, E. Di Bartolomeo, E. Traversa, A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3 cermet anodes for IT-SOFCs. Solid State Ionics 180(9–10), 715–720 (2009)

    Article  CAS  Google Scholar 

  33. L. Bi, E. Fabbri, E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 16(1), 37–40 (2012)

    Article  CAS  Google Scholar 

  34. X. Xu, H.Q. Wang, J.M. Ma, W.Y. Liu, X.F. Wang, M. Fronzi, L. Bi, Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations. J. Mater. Chem. A 7(32), 18792–18798 (2019)

    Article  CAS  Google Scholar 

  35. E. Fabbri, L. Bi, J.L.M. Rupp, D. Pergolesi, E. Traversa, Electrode tailoring improves the intermediate temperature performance of solid oxide fuel cells based on a Y and Pr co-doped barium zirconate proton conducting electrolyte. RSC Adv. 1(7), 1183–1186 (2011)

    Article  CAS  Google Scholar 

  36. J.A. Kilner, M. Burriel, Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014)

    Article  CAS  Google Scholar 

  37. R.R. Peng, T.Z. Wu, W. Liu, X.Q. Liu, G.Y. Meng, Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20(30), 6218–6225 (2010)

    Article  CAS  Google Scholar 

  38. Y. Chen, S. Yoo, K. Pei, D.C. Chen, L. Zhang, B. deGlee, R. Murphy, B.T. Zhao, Y.X. Zhang, Y. Chen, M.L. Liu, An in situ formed, dual-phase cathode with a highly active catalyst coating for protonic ceramic fuel cells. Adv. Funct. Mater. 28(5), 1704907 (2018)

    Article  CAS  Google Scholar 

  39. W. He, R.H. Yuan, F.F. Dong, X.L. Wu, M. Ni, High performance of protonic solid oxide fuel cell with BaCo0.7Fe0.22Sc0.08O3 electrode. Int. J. Hydrogen Energy 42(39), 25021–25025 (2017)

    Article  CAS  Google Scholar 

  40. N.A. Danilov, A.P. Tarutin, J.G. Lyagaeva, E.Y. Pikalova, A.A. Murashkina, D.A. Medvedev, M.V. Patrakeev, A.K. Demin, Affinity of YBaCo4O7-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceram. Int. 43(17), 15418–15423 (2017)

    Article  CAS  Google Scholar 

  41. S.P. Jiang, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrogen Energy 37(1), 449–470 (2012)

    Article  CAS  Google Scholar 

  42. E.H. Da’as, L. Bi, S. Boulfrad, E. Traversa, Nanostructuring the electronic conducting La0.8Sr0.2MnO3 cathode for high-performance in proton-conducting solid oxide fuel cells below 600 °C. Sci. China Mater. 61(1), 57–64 (2018)

    Article  CAS  Google Scholar 

  43. S.P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008)

    Article  CAS  Google Scholar 

  44. C. Peng, J. Melnik, J.X. Li, J.L. Luo, A.R. Sanger, K.T. Chuang, ZnO-doped BaZr0.85Y0.15O3-proton-conducting electrolytes: Characterization and fabrication of thin films. J. Power Sources 190(2), 447–452 (2009)

    Article  CAS  Google Scholar 

  45. L. Bi, S.P. Shafi, E.H. Da’as, E. Traversa, Tailoring the cathode-electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 14(32), 1801231 (2018)

    Article  CAS  Google Scholar 

  46. Z. Hui, P. Michele, Preparation, chemical stability, and electrical properties of Ba(Ce1−xBix)O3 (x = 0.0−0.5). J. Mater. Chem. 12(12), 3787–3791 (2002)

    Article  Google Scholar 

  47. Z.T. Tao, L. Bi, L.T. Yan, W.P. Sun, Z.W. Zhu, R.R. Peng, W. Liu, A novel single phase cathode material for a proton-conducting SOFC. Electrochem. Commun. 11(3), 688–690 (2009)

    Article  CAS  Google Scholar 

  48. E. Fabbri, S. Licoccia, E. Traversa, E.D. Wachsman, Composite cathodes for proton conducting electrolytes. Fuel Cells 9(2), 128–138 (2009)

    Article  CAS  Google Scholar 

  49. Z.T. Tao, L. Bi, Z.W. Zhu, W. Liu, Novel cobalt-free cathode materials BaCexFe1−xO3-delta for proton-conducting solid oxide fuel cells. J. Power Sources 194(2), 801–804 (2009)

    Article  CAS  Google Scholar 

  50. Y.Y. Rao, S.H. Zhong, F. He, Z.B. Wang, R.R. Peng, Y.L. Lu, Cobalt-doped BaZrO3: a single phase air electrode material for reversible solid oxide cells. Int. J. Hydrogen Energy 37(17), 12522–12527 (2012)

    Article  CAS  Google Scholar 

  51. E. Fabbri, I. Markus, L. Bi, D. Pergolesi, E. Traversa, Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics 202(1), 30–35 (2011)

    Article  CAS  Google Scholar 

  52. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ. Sci. 4(12), 4984–4993 (2011)

    Article  CAS  Google Scholar 

  53. A.B. Munoz-Garcia, M. Tuccillo, M. Pavone, Computational design of cobalt-free mixed proton-electron conductors for solid oxide electrochemical cells. J. Mater. Chem. A 5(23), 11825–11833 (2017)

    Article  CAS  Google Scholar 

  54. A.B. Munoz-Garcia, M. Pavone, First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: a-site doped Sr2Fe1.5Mo0.5O6 perovskite. Chem. Mater. 28(2), 490–500 (2016)

    Article  CAS  Google Scholar 

  55. Z.Q. Wang, W.Q. Yang, S.P. Shafi, L. Bi, Z.B. Wang, R.R. Peng, C.R. Xia, W. Liu, Y.L. Lu, A high performance cathode for proton conducting solid oxide fuel cells. J. Mater. Chem. A 3(16), 8405–8412 (2015)

    Article  CAS  Google Scholar 

  56. D. Poetzsch, R. Merkle, J. Maier, Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3: transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 182, 129–143 (2015)

    Article  CAS  Google Scholar 

  57. W. Zhou, R. Ran, Z.P. Shao, Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 192(2), 231–246 (2009)

    Article  CAS  Google Scholar 

  58. Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3 (0.0 ≤ y ≤ 0.8) for fuel cell applications. J. Power Sources 193(2), 400–407 (2009)

    Article  CAS  Google Scholar 

  59. X. Xu, H.Q. Wang, M. Fronzi, X.F. Wang, L. Bi, E. Traversa, Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7(36), 20624–20632 (2019)

    Article  CAS  Google Scholar 

  60. Y.P. Xia, Z.Z. Jin, H.Q. Wang, Z. Gong, H.L. Lv, R.R. Peng, W. Liu, L. Bi, A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance. J. Mater. Chem. A 7(27), 16136–16148 (2019)

    Article  CAS  Google Scholar 

  61. S. Choi, C.J. Kucharczyk, Y.G. Liang, X.H. Zhang, I. Takeuchi, H.I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, X., Bi, L. (2020). Proton-Responsive Nanomaterials for Fuel Cells. In: Sun, Z., Liao, T. (eds) Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-39994-8_8

Download citation

Publish with us

Policies and ethics