Skip to main content

On the Dynamics of Structured Argumentation: Modeling Changes in Default Justification Logic

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12012))

Abstract

This paper studies information changes in default justification logic with argumentation semantics. We introduce dynamic operators that combine belief revision and default theory tools to define both prioritized and non-prioritized operations of contraction, expansion and revision for justification logic-based default theories. This combination enriches both default logics and belief revision techniques. We argue that the kind of attack called “undermining” amounts to those operations that contract a knowledge base by an attacked formula.

I wish to thank Allard Tamminga, Barteld Kooi and Rineke Verbrugge for their useful advice on this project. My research is supported by Ammodo KNAW award Rational Dynamics and Reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, ABA does not distinguish between different kinds of attacks and models each attack as that on premises or what we call here undermining. In ASPIC+, undermining is taken as a primitive notion of attack, which is different from rebuttal or undercut only by virtue of targeting “ordinary” premises of an argument.

  2. 2.

    The first variant of justification logic, the logic of proofs (LP), was developed in [5]. The logic of non-defeasible and factive reasons that we use here was first defined in [10]. For more basic information on its relation to other justification logics see [17]. For recent overviews of justification logic systems, see [6] and [22].

  3. 3.

    For example, one such constant specification set could be generated by assigning a Gödel number to each axiom instance and to each instance of R1.

  4. 4.

    Formally, we also do not require that \(t = t'\) holds in the antecedent of condition (3) for the general definition of defaults above. This reflects the independence of the warrant \((u\cdot t):G\) from the data t : F to which we apply the warrant.

  5. 5.

    The non-inferential view of information change is also relevant for human interaction. As Hlobil [21] argues, we can believe by accepting testimonies, but we cannot make inferences by merely accepting testimony. Two testimonies that contradict each other are to be, ceteris paribus, equally treated and the acceptance of new information is not the same process as inferentially extending the existing (incomplete) information.

  6. 6.

    Proving Proposition 12 is straightforward. Details are omitted due to space limitations.

  7. 7.

    Analogously, conservative expansion might not guarantee that there will be any extension containing a formula F, after a default theory has been conservatively expanded with F.

  8. 8.

    If we were to exhaust all possible combinations, eight revision operators could be defined. Note that the revision operation symbols we use below reflect the composition of the introduced revision operations that are defined in terms of contraction and expansion variants. The symbols are not intended to be in continuity with the standard usage of revision operation symbols.

  9. 9.

    Note that the second output theory \((_{[F]}T^-_{\lnot F})^{\times }_F\) of Definition 17 is an application-constrained default theory (\((_{[F]}T^-_{\lnot F})^+_F\) is, by our convention, a default theory after F has been added to the set of facts). The fact that \((_{[F]}T^-_{\lnot F})^{\times }_F\) is an application-constrained theory might cause problems if we want to make our operators global, rather than local, and enable iterated revision. A solution to this problem would be to allow for iterated contraction and generalize the contraction operation to application-constrained theories. This could be done if we allow that an application-constrained theory \(_{[F]}T\) can be further constrained by a formula G. We leave the details of developing iterated variants of the present operators for the future work.

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Log. 50(2), 510–530 (1985)

    Article  MathSciNet  Google Scholar 

  2. Alfano, G., Greco, S., Parisi, F., Simari, G.I., Simari, G.R.: An incremental approach to structured argumentation over dynamic knowledge bases. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Sixteenth International Conference on Principles of Knowledge Representation and Reasoning, KR 2018 (2018)

    Google Scholar 

  3. Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge (1997)

    Book  Google Scholar 

  4. Antoniou, G.: On the dynamics of default reasoning. Int. J. Intell. Syst. 17(12), 1143–1155 (2002)

    Article  Google Scholar 

  5. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic Log. 7, 1–36 (2001)

    Article  MathSciNet  Google Scholar 

  6. Artemov, S.N., Fitting, M.: Justification Logic: Reasoning with Reasons, Cambridge Tracts in Mathematics, vol. 216. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  7. Baltag, A., Renne, B., Smets, S.: The logic of justified belief change, soft evidence and defeasible knowledge. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 168–190. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9_13

    Chapter  MATH  Google Scholar 

  8. Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge, and conclusive evidence. Ann. Pure Appl. Log. 165(1), 49–81 (2014)

    Article  MathSciNet  Google Scholar 

  9. Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: A logical theory about dynamics in abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 148–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40381-1_12

    Chapter  Google Scholar 

  10. Brezhnev, V.: On the logic of proofs. In: Striegnitz, K. (ed.) Proceedings of the Sixth ESSLLI Student Session, Helsinki, pp. 35–46 (2001)

    Google Scholar 

  11. Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of argumentation systems: minimal change of arguments statuses. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2014 (2014)

    Google Scholar 

  12. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based approach to belief revision in abstract argumentation. In: Yang, Q., Wooldridge, M. (eds.) Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015 (2015)

    Google Scholar 

  13. Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argumentation. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2014 (2014)

    Google Scholar 

  14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  15. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_10

    Chapter  Google Scholar 

  16. van Eemeren, F.H., Garssen, B., Krabbe, E.C.W., Henkemans, A.F.S., Verheij, H.B., Wagemans, J.H.M.: Argumentation and artificial intelligence. In: Handbook of Argumentation Theory, pp. 615–675. Springer, Boston (2014). https://doi.org/10.1007/978-0-387-98197-0

    Google Scholar 

  17. Fitting, M.: Justification logics, logics of knowledge, and conservativity. Ann. Math. Artif. Intell. 53(1–4), 153–167 (2008)

    Article  MathSciNet  Google Scholar 

  18. Gärdenfors, P.: Belief revision and nonmonotonic logic: two sides of the same coin? In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 52–54. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0018432

    Chapter  Google Scholar 

  19. Hansson, S.O.: A survey of non-prioritized belief revision. Erkenntnis 50(2–3), 413–427 (1999)

    Article  MathSciNet  Google Scholar 

  20. Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database Updating. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  21. Hlobil, U.: We cannot infer by accepting testimony. Philos. Stud. 1–10 (2018). https://doi.org/10.1007/s11098-018-1142-3

    Article  Google Scholar 

  22. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications, Wenham (2019)

    MATH  Google Scholar 

  23. van Linder, B., van der Hoek, W., Meyer, J.J.C.: The dynamics of default reasoning. Data Knowl. Eng. 3(21), 317–346 (1997)

    Article  Google Scholar 

  24. Meyer, J.-J.C., van der Hoek, W.: Non-monotonic reasoning by monotonic means. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 399–411. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0018455

    Chapter  Google Scholar 

  25. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63045-7_27

    Chapter  MATH  Google Scholar 

  26. Modgil, S., Prakken, H.: Resolutions in structured argumentation. In: Verheij, B.H., Szeider, S., Woltran, S. (eds.) Computational Models of Argument: Proceedings of COMMA 2012, pp. 310–321. IOS Press (2012)

    Google Scholar 

  27. Pandžić, S.: A logic of default justifications. In: Fermé, E., Villata, S. (eds.) 17th International Workshop on Nonmonotonic Reasoning, NMR 2018, pp. 126–135 (2018)

    Google Scholar 

  28. Pandžić, S.: Logic of defeasible argumentation: constructing arguments in justification logic. Unpublished manuscript (2019)

    Google Scholar 

  29. Pandžić, S.: Reifying default reasons in justification logic. In: Beierle, C., Ragni, M., Stolzenburg, F., Thimm, M. (eds.) Proceedings of the KI 2019 Workshop on Formal and Cognitive Reasoning, DKB-KIK 2019, CEUR Workshop Proceedings, vol. 2445, pp. 59–70 (2019)

    Google Scholar 

  30. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  31. Prakken, H.: Historical overview of formal argumentation. IfCoLog J. Log. Their Appl. 4(8), 2183–2262 (2017)

    Google Scholar 

  32. Renne, B.: Multi-agent justification logic: communication and evidence elimination. Synthese 185(1), 43–82 (2012)

    Article  MathSciNet  Google Scholar 

  33. de Saint-Cyr, F.D., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.C.: Argumentation update in YALLA (yet another logic language for argumentation). Int. J. Approximate Reasoning 75, 57–92 (2016)

    Article  MathSciNet  Google Scholar 

  34. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stipe Pandžić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandžić, S. (2020). On the Dynamics of Structured Argumentation: Modeling Changes in Default Justification Logic. In: Herzig, A., Kontinen, J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science(), vol 12012. Springer, Cham. https://doi.org/10.1007/978-3-030-39951-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39951-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39950-4

  • Online ISBN: 978-3-030-39951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics